首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A structural analysis carried out on the volcanic products of the islands of Salina, Lipari and Vulcano (Aeolian archipelago) points out that the large-scale tectonic setting is dominated by NW-SE trending right-lateral extensional strike-slip faults and by N-S to NE-SW trending normal faults and fractures. This fault pattern generates pull-apart type structures, developing between different right-hand overlapping fault segments and a characteristic extensional imbricate fan geometry at the tip of the major strike-slip faults. All the structures, representing the surface expression of an active crustal discontinuity which controls the evolutionary history of the magmatism of the three islands, are kinematically compatible with a N100°E extension related to a rifting process affecting southern Italy.  相似文献   

2.
Abstract

Variscan convergence produced two-sided (bivergent) crustal-scale thrusting in the Vosges Mountains. In the northern Vosges the central polymetamorphic crystallines were thrust to the NW over Cambrian to Silurian low-grade and very low-grade metamorphic clastics. Synorogenic upper Devonian - lower Carboniferous turbidites and volcanics were folded into NW-vergent structures which display SE-dipping slaty cleavage. The entire sequence shows increasing metamorphism and deformation from NW to SE. Late right-lateral strike-slip faulting along the Lalaye-Lubine fault zone outlasted thrusting. In the southern Vosges a lower Carboniferous turbiditic basin that was fringed on the south by a volcanic arc was tectonically shortened by south-directed tectonic imbrication of slivers of varied rocks including ultramafics, gneissic basement, and synorogenic elastics. The increasing degree of deformation and metamorphism towards the north suggests a thrust contact with the polymetamorphic gneisses of the central Vosges. The final stages of Variscan convergence were accompanied by voluminous granitic plutonism and by faulting along NNE-SSW and E-W-trending strike-slip faults. The tectonic evolution reflects progressive Variscan closure of a previously extended basinal crust in a high-temperature regime.  相似文献   

3.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

4.
The general structure of the Chinese Altai has been traditionally regarded as being formed by five tectono-stratigraphic ‘terranes’ bounded by large-scale faults. However, numerous detrital zircon studies of the Paleozoic volcano-sedimentary sequences shown that the variably metamorphosed Cambro-Ordovician sequence, known as the Habahe Group, is present at least in four ‘terranes’. It structurally represents deepest rocks unconformably covered by Devonian and Carboniferous sedimentary and volcanic rocks. Calc-alkaline, mostly Devonian, granitoids that intruded all the terranes revealed their syn-subduction related setting. Geochemistry and isotope features of the syn-subduction granitoids have shown that they originated mainly from the melting of youthful sediments derived from an eroded Ordovician arc further north. In contrast, Permian alkaline granitoids, mostly located in the southern part of the Chinese Altai, reflect a post-subduction intraplate setting. The metamorphic evolution of the metasedimentary sequences shows an early MP-MT Barrovian event, followed by two Buchan events: LP-HT mid-Devonian (ca. 400–380 Ma) and UHT-HT Permian (ca. 300–270 Ma) cycles. The Barrovian metamorphism is linked to the formation of a regional sub-horizontal possibly Early Devonian fabric and the burial of the Cambro-Ordovician sequence. The Middle Devonian Buchan type event is related to intrusions of the syn-subduction granitoids during an extensional setting and followed by Late Devonian-Early Carboniferous NE-SW trending upright folding and crustal scale doming during a general NW-SE shortening, responsible for the exhumation of the hot lower crust. The last Permian deformation formed NW-SE trending upright folds and vertical zones of deformation related to the extrusion of migmatites, anatectic granitoids and granulite rocks, and to the intrusions of gabbros and granites along the southern border of the Chinese Altai. Finally, the Permo-Triassic cooling and thrust systems affected the whole mountain range from ca. 265 to 230 Ma. In conclusion, the Chinese Altai represents different crustal levels of the lower, middle and upper orogenic crust of a single Cambro-Ordovician accretionary wedge, heterogeneously affected by the Devonian polyphase metamorphism and deformation followed by the Permian tectono-thermal reworking event related to the collision with the Junggar arc. It is the interference of Devonian and Permian upright folding events that formed vertical boundaries surrounding the variously exhumed and eroded crustal segments. Consequently, these crustal segments should not be regarded as individual suspect terranes.  相似文献   

5.
唐渊  刘俊来 《岩石学报》2010,26(6):1925-1937
青藏高原隆升、周边地貌形成是新生代时期印度-欧亚板块碰撞后的重要响应。在滇西北地区发育了一系列由晚新生代(上新世以来)活动断裂所控制的盆地,例如宾川盆地、洱海盆地、鹤庆盆地、弥渡盆地等。宾川盆地是近南北向程海左行走滑断裂在走滑剪切作用下产生的北西向正断层和北东向走滑断层共同作用而形成的一个较大的拉分盆地。洱海盆地是由两组陡立的共轭张剪性(Transtensional)断层组限定的,为一伸展断陷盆地,总体上反映了近E-W向的区域伸展。滇西北地区发育的其它晚新生代盆地,如弥渡盆地、鹤庆盆地、剑川盆地等,也为区域走滑断裂及其分支断裂所控制,并且这些分支断裂在区域上为一组NE-SW和NW-SE向的共轭正断裂,反映了该区域近E-W向的伸展。将藏东南三江地区发育的活动断裂按照其走向分为三组:(1)NW-SE走向的断裂,如红河断裂、无量山-营盘山断裂等;(2)近N-S向断裂系,以程海断裂、小江断裂等为代表;(3)NE-SW走向的断裂,如丽江-剑川断裂、鹤庆-洱源断裂和南定河断裂等。这些断裂的震源机制解表明地震断裂活动性或者是走滑性质或者是伸展属性,它们的组合型式也揭示出藏东南三江地区在上新世以来表现为近E-W向的伸展。区域上,在藏东北部地区发育的断层构造组合普遍反映了以近E-W向挤压为主导的应力场。推测这一现象为上新世以来藏东地区上地壳围绕喜马拉雅东构造结做顺时针旋转所致,区域上受印度-欧亚会聚过程中印度板块顺时针旋转诱发的差异性应力场制约。  相似文献   

6.
The Maksyutov Complex consists of two juxtaposed lithotectonic units—Unit #1 of probable Late Proterozoic formation age, and Unit #2, apparently generated in Cambro-Ordovician time. The eclogite-facies metamorphism of Unit #1 occurred prior to 370-380 Ma, when this unit was subjected to blueschist-facies overprinting. Unit #2 displays the effects of a somewhat similar blueschist- or high-pressure greenschist-facies recrystallization, indicating that it may have been metamorphosed contemporaneously with Unit #1. Our field work and geochemical studies have focused on the Sakmara River area. Preliminary conclusions are as follows: (1) Unit #1 was subjected to metamorphic temperatures of 620 ± 70° C and minimum pressures of 1.5 GPa, or 2.7 GPa if the previously reported interpretation of coesite pseudomorphs from similar rocks exposed near the village of Shubino, 75 km to the south (Chesnokov and Popov, 1965), is correct. Peak metamorphic pressures would have reached at least 3.2 GPa if blocky graphite described in this report from a Sakmara River eclogitic mica schist has replaced neoblastic diamond; (2) Unit #2 experienced much lower maximum metamorphic pressures, on the order of 0.5 to 0.6 GPa; (3) Unit #2 was variably but intensely metasomatized, indicating the presence of an aqueous fluid during the Early Devonian blueschist/greenschist-facies metamorphism; (4) tectonic parallelism of the lithostratigraphic units and their bounding sutures, combined with P-T conditions of recrystallization, suggest assembly of the Maksyutov Complex in an intra-oceanic subduction zone. This process was followed by exhumation and suturing against the more easterly Middle Paleozoic unmetamorphosed ophiolitic (oceanic) basement and superjacent calc-alkaline Magnitogorsk island arc. The Late Proterozoic-Ordovician Mugodzhar and Ilmen microcontinents subsequently were thrust beneath the eastern edge of the Devonian Magnitogorsk Arc. Collision of the entire complex with the Ordovician-Lower Carboniferous continentalmargin Suvanjak-Sakmara accretionary complex, lying to the west on the Russian Platform, also occurred during Middle Paleozoic time. Finally, (5), the tectonic imbrication of the several units within and adjoining the Maksyutov Complex was itself truncated and deformed into N-S parallelism by postulated Late Paleozoic postcollisional strike-slip movement (Dobretsov et al., in review).  相似文献   

7.
阿尔泰晚古生代两类火山岩建造及成矿特征   总被引:1,自引:0,他引:1  
新疆阿尔泰晚古生代火山岩主要发于育于泥盆系和石炭系 ,泥盆系火山岩主要是细碧岩—角斑岩—石英角斑岩建造 ,它们产于海相环境 ,具有地幔成分 ;石炭系火山岩主要是流纹岩—英安岩—安山岩建造 ,它们产出于海陆过渡相—陆相环境 ,属于地壳成分。这两种火山岩建造的岩石学、岩石化学和微量元素地球化学均有明显不同 ,各种地质条件表明 ,泥盆系火山岩产于裂谷拉张环境 ,而石炭系火山岩产于造山挤压环境。由于两类火山岩的成因不同 ,与它们相关的金属矿产成矿特征也有明显的差异  相似文献   

8.
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic(500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic(Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision(according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period(385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period(323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period(323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.  相似文献   

9.
The eastern Pontide magmatic arc extends ~600 km in an E-W direction along the Black Sea coast and was disrupted by a series of fault systems trending NE-SW, NW-SE, E-W, and N-S. These fault systems are responsible for the formation of diachronous extensional basins, rift or pull-apart, in the northern, southern, and axial zones of the eastern Pontides during the Mesozoic. Successive extensional or transtensional tectonic regimes caused the abortive Liassic rift basins and the Albian and Campanian pull-apart basins with deep-spreading troughs in the southern and axial zones. Liassic, Albian, and Campanian neptunian dikes, which indicate extensional tectonic regimes, crop out within the Paleozoic granites near Kale, Gumushane, and the Malm–Lower Cretaceous platform carbonates in Amasya and Gumushane. These neptunian dikes correspond to extensional cracks that are filled and overlain by the fossiliferous red pelagic limestones. Multidirectional Liassic neptunian dikes are consistent with the general trend of the paleofaults (NE-SW, NW-SE, and E-W), and active dextral North Anatolian fault (NAF) and sinistral Northeast Anatolian fault (NEAF) systems. The Albian neptunian dikes in Amasya formed in the synthetic oblique left-lateral normal faults of the main fault zone that runs parallel to the active North Anatolian fault zone (NAFZ).

Kinematic interpretation of the Liassic and Albian neptunian dikes suggests N-S extensional stress or northward movement of the Pontides along the conjugate fracture zones parallel to the NAFZ and NEAFZ. This northward movement of the Pontides in Liassic and Albian times requires left-lateral and right-lateral slips along the conjugate NAFZ and Northeast Anatolian fault zones (NEAFZ), respectively, in contrast to the recent active tectonics that have been accommodated by N-S compressional stress. On the other hand, mutual relationships between the neptunian dikes and the associated main fault zone of Campanian age extending in an E-W direction in the Kale area, Gumushane suggest the existence of a main left-lateral transtensional wrench zone. This system might be accommodated by the counterclockwise convergence of the Turkish plate with the Afro-Arabian plate relative to the Eurasian plate, and the southward oblique subduction of Paleotethys beneath the eastern Pontide magmatic arc during the Mesozoic.  相似文献   

10.
The Paleozoic massif of Tichka in the southern part of the Western High Atlas of Morocco constitutes a structural transition between the Meseta and the Anti-Atlas domains. It was affected by a complex network of fractures noticeable at different scales. Using Landsat ETM+ imagery permits detecting the main fracture directions. Various techniques of lineament’s extraction were applied, including the colored compositions, spectral band ratios, and directional filters applied to the principal component analysis. Lineament’s extraction is based on visual interpretation and completed by field observations. The resulted map allows recognizing at least four trending fracture system, with average N-S, NE-SW, E-W, and NW-SE orientations. The surrounding rocks of the granitic massif show a high fracture density. Tectonic indicators show that this massif is initially affected by NW-SE Variscan tectonic extension, followed by NW-SE Variscan compression. This regime is being maintained until the late Variscan period corresponding to the relaxation of the NW-SE major Variscan stress. A clockwise rotation of the latter stress, which became N-S to NNE-SSW, related to the late Variscan deformation, is responsible for reworking preexisting faults.  相似文献   

11.
青藏高原东南部第四纪右旋剪切运动   总被引:4,自引:0,他引:4  
通过对藏东南嘉黎断裂和滇西北断裂实地考察研究,表明青藏高原南部不存在统一的边界走滑断裂。嘉黎断裂的西段位于青藏高原南部,是一个南北挤压作用下的东西向伸展构造区,发育近南北向的地堑系,嘉黎断裂西段是这些地堑之间的转换断层,具有较高的右旋走滑速率。滇西北断裂与红河断裂构成川滇菱形块体的西南边界,该块体具有向东南逃逸和顺时针旋转运动。  相似文献   

12.
张之孟 《地球学报》1994,15(Z1):14-31
中国北方的中朝克拉通与南方的扬子克拉通无论在基底年代及盖层发育程度、沉积环境及古生物群上都有差异。它们是两个构造发育史不同的大陆。这两个古大陆之间的大洋究竟有多宽?是何时关闭的?合并时的构造运动强烈程度?在挽近地质历史时期有无相类似的情况?这些问题一直是中外地质学家所关注,并在不同程度上讨论过的问题。近年来的地质工作,提供了一些可据以回答上述问题的成果,但全面可靠地回答上述全部问题还有待今后的努力。笔者在过去的文章(1-3)曾讨论一些有关问题。本文,拟就近期国内外的研究成果,发表一些评论,并提出作者的看法  相似文献   

13.
Packages of Late Paleozoic tectonic nappes and associated major NE-trending strike-slip faults are widely developed in the Altai–Sayan folded area. Fragments of early deformational phases are preserved within the Late Paleozoic allochthons and autochthons. Caledonian fold-nappe and strike-slip structures, as well as accompanying metamorphism and granitization in the region, are typical of the EW-trending suture-shear zone separating the composite Kazakhstan–Baikal continent and Siberia. In the Gorny Altai region, the Late Paleozoic nappes envelop the autochthon, which contains a fragment of the Vendian–Cambrian Kuznetsk–Altai island arc with accretionary wedges of the Biya–Katun’ and Kurai zones. The fold-nappe deformations within the latter zones occurred during the Late Cambrian (Salairian) and can thus be considered Salairian orogenic phases. The Salairian fold-nappe structure is stratigraphically overlain by a thick (up to 15 km) well-stratified rock unit of the Anyui–Chuya zone, which is composed of Middle Cambrian–Early Ordovician fore-arc basin rocks unconformably overlain by Ordovician–Early Devonian carbonate-terrigenous passive-margin sequences. These rocks are crosscut by intrusions and overlain by a volcanosedimentary unit of the Devonian active margin. The top of the section is marked by Famennian–Visean molasse deposits onlapping onto Devonian rocks. The molasse deposits accumulated above a major unconformity reflects a major Late Paleozoic phase of folding, which is most pronounced in deformations at the edges of the autochthon, nearby the Kaim, Charysh–Terekta, and Teletskoe–Kurai fault nappe zones. Upper Carboniferous coal-bearing molasse deposits are preserved as tectonic wedges within the Charysh–Terekta and Teletskoe–Kurai fault nappe zones.Detrital zircon ages from Middle Cambrian–Early Ordovician rocks of the Anyui–Chuya fore-arc zone indicate that they were primarily derived from Upper Neoproterozoic–Cambrian igneous rocks of the Kuznetsk–Altai island arc or, to a lesser extent, from an Ordovician–Early Devonian passive margin. A minor age population is represented by Paleoproterozoic grains, which was probably sourced from the Siberian craton. Zircons from the Late Carboniferous molasse deposits have much wider age spectra, ranging from Middle Devonian–Early Carboniferous to Late Ordovician–Early Silurian, Cambrian–Early Ordovician, Mesoproterozoic, Early–Middle Proterozoic, and early Paleoproterozoic. These ages are consistent with the ages of igneous and metamorphic rocks of the composite Kazakhstan–Baikal continent, which includes the Tuva-Mongolian island arc with accreted Gondwanan blocks, and a Caledonian suture-shear zone in the north. Our results suggest that the Altai–Sayan region is represented by a complex aggregate of units of different geodynamic affinity. On the one hand, these are continental margin rocks of western Siberia, containing only remnants of oceanic crust embedded in accretionary structures. On the other hand, they are represented by the Kazakhstan–Baikal continent composed of fragments of Gondwanan continental blocks. In the Early–Middle Paleozoic, they were separated by the Ob’–Zaisan oceanic basin, whose fragments are preserved in the Caledonian suture-shear zone. The movements during the Late Paleozoic occurred along older, reactivated structures and produced the large intracontinental Central Asian orogen, which is interpreted to be a far-field effect of the colliding East European, Siberian, and Kazakhstan–Baikal continents.  相似文献   

14.
Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50 km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNWSSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22 km and 5.6 km respectively.  相似文献   

15.
Microtectonic study of brittle structures in the József Hill Cave, Budapest, highlights the connection between different phases of fracturing and cave formation. E-W trending dextral faults (second order Riedels) and NW-SE oriented tension fractures developed in a ENE-WSW trending dextral shear zone as a result of WNW-ESE directed compression. Ascending thermal water dissolved cave galleries and created barite veins along these fractures. The first stage of cave formation as inferred from timing of fracturation from the regional stress field was Oligocene-Early Miocene. Between the Middle Miocene and Quaternary new N-S to NE-SW trending normal faults were formed by ESE-WNW extension. Pleistocene differential uplift resulted in the reactivation and enlarging of fault zones, dominantly the E-W trending older Riedels. These recent tectonic events enhanced the original en echelon geometry of the older cave corridors.  相似文献   

16.
要通过在TM遥感图像解译和野外观测的基础上,描述了东昆仑断裂带东段活动形迹的组成和活动断层地貌特征,阐述了甘南高原西秦岭地区新近纪拉分盆地的沉积-构造特征,提出了该区东昆仑-秦岭断裂系晚新生代左旋走滑伸展-走滑挤压-走滑伸展的3个阶段的构造变形模式。指出,中新世晚期至上新世早期,东昆仑-秦岭断裂系以左旋走滑伸展活动为主,伴随着西秦岭地区拉分盆地的形成和超基性火山岩群的发育。这期左旋走滑伸展活动向东扩展导致了渭河盆地新近纪引张应力方向由早期的NE-SW向转变为晚期的NW—SE向。上新世晚期以来(约3.4Ma以前),东昆仑-秦岭断裂系以左旋走滑挤压活动为主,导致早期拉分盆地的轻微褶皱变形,走滑挤压活动主要集中在东昆仑东段玛沁-玛曲主断裂带上。该期构造变动持续到早更新世,它的向东扩展产生了广泛的地壳形变效应,包括青藏东缘岷山隆起带的快速崛起、华北地区汾-渭地堑系的形成和发展以及郯庐断裂带右旋走滑活动等。中、晚更新世时期,断裂系以走滑伸展变形为主,主要集中在东昆仑断裂带东段3个分支上,地块向东挤出伴随着顺时针旋转。  相似文献   

17.
滇西西盟一带是保山—掸邦地块在我国境内的一个基底岩系出露地区。该地区的前泥盆纪变质岩系可划分成两个构造层,下部为元古代构造层,由变质深度达角闪岩相的怕可杂岩系组成,发育3期南北向的变形构造;上部为早古生代构造层,由低绿片岩相变质的王雅组、允沟组组成,发育两期呈南北向的变形构造。变形构造表明,西盟变质岩系的主期构造格架以怕可—老街子背形叠瓦垛为主导构造要素,由背驮式扩展的向东逆冲的盲逆冲断裂系组成,王雅—允沟反冲叠瓦扇是盲逆冲断裂系的盖层响应变形系统,并以向西逆冲的推覆构造为特征  相似文献   

18.
Large-scale geological maps available for individual areas in the Central Sakhalin Fault zone and geological-geophysical maps of Sakhalin and surrounding sea areas were analyzed to elucidate the tectonic evolution of the fault zone determined by movements of crustal blocks due to the opening of rift basins. Changes in the direction of horizontal compression in the Sakhalin fold system from diagonal (NW-SE) to near-latitudinal resulted in the transformation of near-meridional right-lateral strike-slip faults into reversed faults in the Late Miocene. This allows Sakhalin faults to be interpreted as a zone of recent right-lateral shear between Eurasian and Sea of Okhotsk plates.  相似文献   

19.
The Kurosegawa zone in southwest Japan is a 600 km long serpentinite mélange in the Chichibu terrains. It runs generally E-W but is slightly oblique to the subparallel arrangement of the Ryoke, Sanbagawa and Chichibu belts of Southwest Japan. A variety of geological units occurs in the Kurosegawa zone:
1. (1) granodiorite, gneiss and amphibolite of ca. 400 Ma,
2. (2) Siluro-Devonian formations,
3. (3) Upper Carboniferous to Jurassic formations,
4. (4) Upper Jurassic to Lower Cretaceous formations,
5. (5) serpentinite and
6. (6) low- to medium-grade metamorphic rocks of various baric types (ages, 220, 320, 360 and 420 Ma by K-Ar).
The most widespread is a high-pressure intermediate group of metamorphic rocks. Serpentinite is emplaced along the faults between and within the constituent units.Rocks of the Kurosegawa zone represent a mature orogenic belt along a continental margin or an island arc. Its original site as constrained by paleomagnetism was near the equatorial area. Here, 400 Ma old paired metamorphism and related magmatism took place. The island arc or microcontinent migrated northward to collide with the Eurasia plate during Late Jurassic, thus consuming the intervening ocean.  相似文献   

20.
大兴安岭地区上古生界变形特征及构造层划分   总被引:4,自引:0,他引:4  
大兴安岭地区古生界构造变形表明,上古生界自二叠纪末以来遭受了3期构造变形改造:第一期变形为二叠纪末华北板块与佳蒙地块碰撞造成的近EW向展布的断裂和褶皱构造,强度由南向北有减弱的趋势;第二期变形为侏罗纪西太平洋板块俯冲导致的NE—NNE向左行走滑断裂和褶皱构造;第三期为NW向具有右行走滑特征的断裂构造,时间大致在晚侏罗世—早白垩世。综合区域构造、沉积岩古地理分析对比,初步将大兴安岭地区上古生界划分为早古生代、D—C1、C2—P2、P3—T14个构造层:早古生代末加里东运动之后,在D—C1期间早期以伸展为主,总体表现为北海南陆的古地理特征;早石炭世末期松嫩地块与额尔古纳—兴安地块沿嫩江—扎兰屯一线碰撞拼接;C2—P2期间总体表现为造山后伸展特征,表现为北陆南海;P3—T1时期古亚洲洋的闭合,海水退出,转为陆相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号