首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granitic rocks are the principle agent of crustal differentiation, therefore their origins yield important information on crustal formation and reworking. An extensive survey of zircon Hf isotopes from granitic rocks in a large region can provide a profile of crustal characteristics that may be further linked to previous crustal evolution. In this study, we measured U–Pb ages and Hf isotope compositions of zircon grains extracted from twenty-five Jurassic, five Triassic and two Ordovician granitic plutons from the Nanling Range, South China Block (SCB). Combined with the published Lu–Hf isotopic data for the granitic rocks in the studied and adjacent areas, three domains with different crustal formation histories have been identified in the southern part of the SCB: eastern side, middle part and western side. The eastern side extends to the coastal area of the SCB, with dominant Hf crustal model ages (TDM2) in zircons falling within the range of 2.2–1.6 Ga. The middle part is partly coincided with the low-Nd model age belt proposed by Chen and Jahn (1998), with zircon Hf TDM2 ranging from 1.6 to 1.0 Ga. The western side covers the westernmost Nanling Range and the western end of the Jiangnan orogen, in which the granitoids have zircon Hf TDM2 model ages spanning 2.2–1.8 Ga. The Paleo- to Meso-Proterozoic model ages of the Phanerozoic granitoids in the Nanling Range imply a long-term crustal reworking. Zircons from the western and eastern sides have an average εHf(155 Ma) at around −10, about 4 epsilon units lower than the middle part (εHf(155 Ma) = −6). Hf TDM2 histogram from the western Nanling Range is similar to that of the Neoproterozoic granitoids in northern Guangxi Province to the west but much lower to the granites in the middle part to the east. The eastern side has a broader range of Hf model ages in zircons, with the main peak low to ca 1.6 Ga, suggesting the reworking of Mesoproterozoic crust. However, granitoids in the middle part have zircon Hf TDM2 ages at 1.6–1.0 Ga, which indicates the incorporation of younger crust materials into the magma sources. The Hf model ages of granitoids, as well as four zircon xenocrysts with ages around 920 Ma within the Mesozoic granitoids in the middle part, indicate that the middle part has similar crustal features with the eastern Jiangnan orogen. We propose that this low TDM2 granite belt is probably part of the early Neoproterozoic arc-continent collision belt between different continents (possibly Yangtze and Cathaysia) during the early assembling processes, while the granitoids in the western and eastern sides have similar crustal compositions.  相似文献   

2.
Controversy has long surrounded the tectonic framework and evolution of the Mudanjiang Ocean between the Bureya–Jiamusi–Khanka Massif and Songnen–Zhangguangcai Range Massif, which are located in the easternmost segment of the Central Asian Orogenic Belt. To address these issues, we present zircon U-Pb ages, geochemical data, and zircon Hf isotopic compositions of the Taipinggou amphibolite and metagabbro exposed along the boundary area of Bureya–Jiamusi Massif and Songnen–Zhangguangcai Range Massif. Magmatic zircons from the amphibolite and metagabbro yield 206Pb/238U ages of 267 ± 2 Ma and 264 ± 2 Ma, respectively, which are interpreted as protolith ages. The geochemical data of the amphibolite samples show transitional characteristics of calcalkaline to tholeiitic series, with high MgO concentrations (9.44–10.48 wt.%) and Mg-numbers (73–75). These samples are enriched in large ion lithophile elements (e.g. Rb, Ba, and K) and light rare earth elements and are depleted in high-field-strength elements (e.g. Nb, Ta, and Ti) and heavy rare earth elements, with εHf(t) values of ?6.63 to ?3.26. It is inferred that the parental magma originated from an enriched lithospheric mantle that had been metasomatized by fluids derived from subducted oceanic slab. During magma evolution, the magma that formed the amphibolite mainly experienced accumulation with a shallow-level evolutionary process involving fractional crystallization. The Taipinggou metagabbro samples are subalkaline series and also characterized by enrichment in large ion lithophile elements (e.g. Rb, Ba, and K) and light rare earth elements and by depletion in Nb–Ta–P–Ti, with εHf(t) values of ?3.09 to +1.16. The Taipinggou metagabbro and amphibolite have similar geochemical and Hf isotopic compositions, indicating a common parental magma source but with different degrees of magmatic differentiation. Based on the new geochronological and geochemical data presented in this study, we propose that both the Taipinggou metagabbro and amphibolite formed in a Middle Permian continental arc setting, closely related to eastward subduction beneath the Bureya–Jiamusi Massif. Combined with previous studies and regional geological observations, we suggest that a double-side subduction model is favoured for the Late Palaeozoic–Early Mesozoic geodynamic processes along the boundary area of Bureya–Jiamusi–Khanka Massif and Songnen–Zhangguangcai Range Massif.  相似文献   

3.
A combined study of zircon U–Pb ages and Lu–Hf isotopes, mineral O isotopes, whole-rock elements and Sr–Nd isotopes was carried out for Mesozoic granitoids from the Shandong Peninsula in east-central China, which tectonically corresponds to the eastern part of the Sulu orogen that formed by the Triassic continental collision between the South and North China Blocks. Four plutons were investigated in this region, with the Linglong and Guojialing plutons from the northwestern part (Jiaobei) and the Kunyushan and Sanfoshan plutons from the southeastern part (Jiaodong). The results show that these granitoids mostly have high Sr, low Yb and Y contents, high (La/Yb)N and Sr/Y ratios with negligible to positive Eu anomalies (Eu/Eu* = 0.69–1.58), which are similar to common adakites. On the other hand, they have relatively low MgO, Cr, Ni contents and thus low Mg#. Zircon U–Pb dating yields Late Jurassic ages of 141 ± 3 to 157 ± 2 Ma for the Linglong and Kunyushan plutons, but Early Cretaceous ages of 111 ± 2 to 133 ± 3 Ma for the Guojialing and Sanfoshan plutons. Some zircon cores from the Linglong and Kunyushan granitoids have Neoproterozoic U–Pb ages. All the granitoids have variably negative zircon εHf(t) values of ?39.6 to ?5.4, with Mesoproterozoic to Paleoproterozoic Hf model ages of 1515 ± 66 to 2511 ± 97 Ma for the Sanfoshan pluton, but Paleoproterozoic to Paleoarchean Hf model ages of 2125 ± 124 to 3310 ± 96 Ma for the other three plutons. These indicate that the Mesozoic granitoids formed in the postcollisional stage and were derived mainly from partial melting of the subducted South China Block that is characterized by Paleoproterozoic juvenile crust and Neoproterozoic magmatic rocks along its northern edge. However, there are some differences between the Jiaobei and Jiaodong plutons. Compared to the Jiaodong granitoids, the Jiaobei granitoids have very old zircon Hf model ages of 3310 ± 96 Ma suggesting the possible involvement of a Paleoarchean crust that may be derived from the North China Block. Therefore, the continental collision between the two blocks would bring crustal materials from both sides into the subduction zone in the Triassic, yielding subduction-thickened crust as the magma source for the adakite-like granitoids. While lithospheric extension and orogenic collapse are considered a major cause for postcollisional magmatism, anatexis of the subducted mafic crust is proposed as a mechanism for chemical differentiation of the continental crust towards felsic composition.  相似文献   

4.
兴凯湖花岗杂岩体的锆石U——Pb 年龄及其地质意义   总被引:3,自引:0,他引:3  
佳木斯地块东南缘的兴凯湖花岗杂岩体主要由花岗闪长岩、二长花岗岩和正长花岗岩组成,其锆石的LA-ICP-MS U-Pb 测年结果显示,杨田寨南山岩体形成于257 ± 2 Ma,双子山岩体形成于215 ~212 Ma; 花岗岩的时空展布表明,两期花岗质岩浆的就位可能分别与古亚洲洋板块的俯冲作用和后造山伸展进程密切相关。结合本区和黑龙江东部其他花岗质岩石的年龄,揭示了佳木斯地块和兴凯地块在早古生代、二叠纪及三叠纪共同经历了三期大规模岩浆活动,暗示两者具有相同的构造属性,共同组成了同一陆块。  相似文献   

5.
本文报道了黑龙江嘉荫和俄罗斯远东Kundur(昆杜尔)地区黑龙江杂岩锆石U-Pb年代学和Hf同位素分析结果,并结合前人研究成果,探讨了黑龙江杂岩的物质组成、形成时代、构造就位时间及物源。黑龙江嘉荫地区黑龙江杂岩中两个石榴石白云母石英片岩(13HYC28-1和13HYC29-1)原岩为流纹岩,其锆石U-Pb年龄分别为185±1Ma和183±1Ma,应代表黑龙江杂岩中存在的中酸性火山岩原岩的形成时代;俄罗斯远东Kundur(昆杜尔)地区石榴石二云母片岩(14RF4-1)和白云母石英片岩(14RF5-1)碎屑锆石年龄频谱主要存在两个年龄区间:183~286Ma和420~525Ma,另外还有少量前寒武纪年龄。这些碎屑锆石年龄组合与佳木斯地块和松嫩-张广才岭地块东缘发育的岩浆事件相对应,揭示其沉积物源应来自于这些火成岩。黑龙江杂岩碎屑锆石年龄数据中早侏罗世的最小峰期年龄(188Ma)代表了黑龙江杂岩原岩成岩时代的下限,结合区内177~165Ma的单矿物变质变形年龄,可以判定黑龙江杂岩的构造就位时间为早侏罗世晚期-中侏罗世。黑龙江杂岩的形成与就位过程揭示了东北亚陆缘早中生代的构造演化历史:中-晚三叠世(240~230Ma),牡丹江洋沿嘉荫-牡丹江断裂裂开并逐渐扩张,早侏罗世期间,古太平洋板块开始向欧亚大陆之下俯冲,受其影响,牡丹江洋俯冲并闭合于早侏罗世晚期-中侏罗世,最终导致佳木斯地块与松嫩-张广才岭地块碰撞拼合以及黑龙江杂岩的构造就位。  相似文献   

6.
The southern Qiangtang magmatic belt was formed by the north-dipping subduction of the Bangong–Nujiang Tethyan Ocean during Mesozoic. To better understand the petrogenesis, time–space distribution along the length of this belt, 21 samples of several granitoid bodies, from west to east, in the Bangong Co, Gaize, Dongqiao and Amdo areas were selected for in-situ zircon U–Pb dating, Hf isotopic and whole-rock chemical analyses. The results suggest a prolonged period of magmatic activity (185–84 Ma) with two major stages during the Jurassic (185–150 Ma) and the Early Cretaceous (126–100 Ma). Both the Jurassic and Cretaceous granitoids are high-K calc-alkaline I-type rocks, except the Cretaceous two-mica granite from Amdo in the east, which belongs to S-type. The granitoids are generated from different source materials as indicated by zircon Hf isotopic compositions. The Bangong Co and Dongqiao granitoids show high zircon εHf(t) values of − 1.3–13.6 with younger TDMC ages of 293–1263 Ma, suggesting a relatively juvenile source; whereas the Gaize and Amdo granitoids have low εHf(t) values of − 16.1–2.9 with older TDMC ages of 999–2024 Ma, indicating an old crustal contribution. These source rocks melt at different P–T conditions as suggested by Sr/Y ratio and TZr. The Sr/Y ratio of both stage granitoids increases with decreasing age. However, the TZr of the Jurassic granitoids decreases, whereas the TZr of the Cretaceous granitoids increases with decreasing age. The contrasting geochemical signatures of these granitoids may be controlled by the varying contribution of slab-derived fluids involved in the generation of the Jurassic and Cretaceous granitic magmas; i.e. increasing amount of fluids in the Jurassic, whereas decreasing amount of fluids in the Cretaceous. Therefore, it is proposed that the Jurassic and Cretaceous magmatism may be related to subduction and closure of the Bangong–Nujiang Tethyan Ocean, respectively. The age pattern of the Jurassic and Cretaceous granitoids suggests an oblique subduction of the Bangong–Nujiang Tethyan Ocean and a diachronous collision between the Lhasa and Qiangtang blocks.  相似文献   

7.
Early Paleozoic peraluminous granites are abundant in the eastern part of the Qilian orogen, northeastern margin of the Tibetan Plateau. A combined study involving geochronology, whole-rock geochemical and Sr–Nd–Hf isotopic compositions for three Early Paleozoic peraluminous granitic plutons (Jishishan, Ledu and Shichuan plutons) from the eastern Qilian orogen was carried out to evaluate the causes of chemical variations and generation mechanisms of peraluminous granitic magmas. These granitic plutons have magma crystallization ages of 455–427 Ma and are moderately to strongly peraluminous (A/CNK = 1.03–1.18). Geochemical and Sr–Nd–Hf isotopic data indicate that they consist substantially of crust-derived melts. The Jishishan and Ledu peraluminous granites were dominantly produced by partial melting of Precambrian orthogneisses. The Shichuan monzogranites, with low HREE contents (e.g., Yb = 0.80–1.83 ppm) and slightly negative εNd(t) (− 5.3 to − 2.3) and positive εHf(t) (+ 1.6 to + 3.4), could be derived from immature crustal materials. Relatively high average zircon saturation temperatures (> 750 °C for each pluton), obvious negative Eu anomalies (Eu/Eu* = 0.28–0.80) and low Pb/Ba ratios (0.03–0.16) for the Jishishan, Ledu and Shichuan granites are consistent with crustal melting involving biotite breakdown under fluid-absent conditions. Our results suggest that compositional variations of moderately to strongly peraluminous granitic magmas are mainly controlled by source compositions and melting conditions, while the processes such as mixing with mantle-derived magma, fractional crystallization, restite unmixing and peritectic assemblage entrainment were insignificant (or only play secondary roles) in their genesis. Late Ordovician to Middle Silurian crustal anatexis in the eastern Central Qilian was probably linked with slab break-off which may be an important mechanism in addition to lithospheric delamination for the generation of moderately to strongly peraluminous granites in a post-collisional setting.  相似文献   

8.
黑龙江省东部松嫩—张广才岭地块与佳木斯地块之间的演化历史以及古亚洲洋构造体系与环太平洋构造体系的叠加与转化一直是地学领域研究的热点问题之一。依据该区古生代—早中生代火成岩的年代学与岩石组合研究,结合碎屑锆石的年代学研究成果,讨论了松嫩—张广才岭地块与佳木斯地块之间的演化历史以及两大构造体系叠加与转化的时间。锆石U-Pb定年结果表明:黑龙江省东部古生代—早中生代岩浆作用可划分成8期:早奥陶世(485Ma)、晚奥陶世(450Ma)、中志留世(425Ma)、中泥盆世(386Ma)、早二叠世(291Ma)、中二叠世(268 Ma)、晚三叠世(201~228 Ma)以及早侏罗世(184 Ma)。早奥陶世—中志留世,岩浆作用主要分布在松嫩—张广才岭地块的东缘,并呈南北向带状展布,主要由闪长岩-英云闪长岩-二长花岗岩组成,显示活动陆缘—碰撞的构造演化历史,揭示松嫩—张广才岭地块与佳木斯地块于中志留世(425Ma)已经拼合在一起,这也得到了早泥盆世地层碎屑锆石年代学的支持。中泥盆世,火山作用分布在佳木斯地块东缘和松嫩—张广才岭地块上,前者为双峰式火山岩组合,后者为A型流纹岩,它们共同揭示该区处于一种碰撞后的伸展环境。早二叠世,佳木斯地块东缘发育一套钙碱性火山岩组合,揭示古亚洲洋俯冲作用的存在,而同期的张广才岭地区则发育一套典型的双峰式火成岩组合,揭示了陆内伸展环境的存在。中二叠世,同碰撞型火山岩分布于佳木斯地块东缘及东南缘,其形成可能与佳木斯地块和兴凯地块的碰撞拼合有关。晚三叠世,张广才岭地区存在的双峰式火山岩和敦—密断裂东南区发育的A型流纹岩均显示陆内的伸展环境,其形成应与古亚洲洋最终闭合后的伸展环境相联系。此外,结合牡丹江断裂两侧均发育中—晚二叠世花岗岩以及佳木斯地块上晚三叠世—早侏罗世岩浆作用的缺失,暗示松嫩—张广才岭地块与佳木斯地块在三叠纪早期沿牡丹江断裂可能存在一次裂解事件。而早—中侏罗世陆缘(东宁—汪清—珲春)钙碱性火山岩和陆内(小兴安岭—张广才岭)双峰式火成岩组合的出现,结合牡丹江断裂两侧"张广才岭群"和"黑龙江群"构造混杂岩的就位,暗示松嫩—张广才岭地块与佳木斯地块在早—中侏罗世再次拼合,这也标志着环太平洋构造体系的开始。  相似文献   

9.
East Qinling is the largest porphyry molybdenum province in the world; these Mo deposits have been well documented. In West Qinling, however, few Mo deposits have been discovered although granitic rocks are widespread. Recently, the Wenquan porphyry Mo deposit has been discovered in Gansu province, which provides an insight into Mo mineralization in West Qinling. In this paper we report Pb isotope compositions for K-feldspar and sulfides, S isotope ratios for sulfides, the results obtained from petrochemical study and from in situ LA-ICP-MS zircon U-Pb dating and Hf isotopes. The granitoids are enriched in LILE and LREE, with REE and trace element patterns similar to continental crust, suggesting a crustal origin. The Mg# (40.05 to 56.34) and Cr and Ni contents are high, indicating a source of refractory mafic lower crust. The εHf(t) values of zircon grains from porphyritic monzogranite range from ? 2.9 to 0.6, and from granitic porphyry vary from ? 3.3 to 1.9. The zircons have TDM2 of 1014 to 1196 Ma for the porphyritic monzogranite and 954 to 1224 Ma for the granitic porphyry, implying that these granitoids were likely derived from partial melting of a Late Mesoproterozoic juvenile lower crust. The Pb isotope compositions of the granitoids are similar to granites in South China, showing that the magma was sourced from the middle–lower crust in the southern Qinling tectonic unit. The Pb isotopic contrast between the Mo-bearing granitoids and ores shows that the Pb in the ore-forming solution was derived from fractionation of a Triassic magmatic system. δ34S values of sulfides are between 5.02 and 5.66‰, similar to those associated with magmatic-hydrothermal systems. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 216.2 ± 1.7 and 217.2 ± 2.0 Ma for the granitoids, consistent with a previously reported molybdenite Re-Os isochron age of 214.4 ± 7.1 Ma. This suggests that the Mo mineralization is related to the late Triassic magmatism in the West Qinling orogenic belt. In view of these geochemical results and known regional geology, we propose that both granitoid emplacement and Mo mineralization in the Wenquan deposit resulted from the Triassic collision between the South Qinling and the South China Block, along the Mianlue suture. Since Triassic granitoid plutons commonly occur along the Qinling orogenic belt, the Triassic Wenquan Mo-bearing granitoids highlight the importance of the Triassic tectono-magmatic belt for Mo exploration. In order to apply this metallogenic model to the whole Qinling orogen, further study is needed to compare the Wenquan deposit with other deposits.  相似文献   

10.
In northeastern Vietnam, Late Paleozoic and Permo-Triassic granitic plutons are widespread, but their tectonic significance is controversial. In order to understand the regional magmatism and crustal evolution processes of the South China block (SCB), this study reports integrated in situ U–Pb, Hf–O and Sr–Nd isotope analyses of granitic rocks from five plutons in northeastern Vietnam. Zircon SIMS U–Pb ages of six granitic samples cluster around in two groups 255–228 Ma and 90 Ma. Bulk-rock εNd (t) ranges from −11 to −9.7, suggesting that continental crust materials were involved in their granitic genesis. In situ zircon Hf–O isotopic measurements for the granitic samples yield a mixing trend between the mantle- and supracrustal-derived melts. It is suggested that the granitic rocks were formed by re-melting of the continental crust. These new data are compared with the Paleozoic and Mesozoic granitic rocks of South China. We argue that northeastern Vietnam belongs to the South China block. Though still speculated, an ophiolitic suture between NE Vietnam and South China, so-called Babu ophiolite, appears unlikely. The Late Paleozoic to Mesozoic magmatism in the research area provides new insights for the magmatic evolution of the South China block.  相似文献   

11.
《Gondwana Research》2014,25(2):797-819
A suite of Paleozoic granitoids in Central Tianshan was studied for both geochemistry and geochronology in an effort to constrain their origin and tectonic setting. We combined LA-ICP-MS dating of zircon, standard geochemical analyses and Hf-isotopic studies of zircon to develop our tectonic model. Based on our analysis, the granitoids formed in three distinctive stages: ~ 450–400 Ma, ~ 370–350 Ma and ca. 340 Ma. The first stage (450–400 Ma) granitoids exhibit metaluminous, magnesian, high-K to shoshonitic characteristics of I-type granitoids (arc-setting), that are enriched in LREE relative to HREE with high (La/Yb)CN values, show negative Eu anomaly and are depleted in Nb, Ta and Ti. This phase of granitoid emplacement was most likely related to the southward subduction of the Paleo-Tianshan Ocean beneath the Tarim block and the subsequent Central Tianshan arc. In contrast, the second stage granitoids (370–350 Ma) are distinctly different and are classified as calc-alkaline or shoshonitic plutons with a weak positive Eu anomaly. Within the second stage granitoids, it appears that the earlier (~ 365 Ma) granitoids fit within the A-type field whereas the younger (~ 352 Ma) granitoids plot within the post-collisional potassic field. These granitoids formed during collisions between Central Tianshan and the Tuha terrane that occurred along the northern margin of Central Tianshan. Lastly, the ca. 340 Ma granitoids are typical of volcanic arc granitoids again that probably formed during the northward subduction of the South Tianshan Ocean beneath the Central Tianshan landmass or the subsequent southward subduction of the residual Paleo-Tianshan Ocean.The Hf isotopic data of zircons from all the studied granitoids were pooled and yielded three prominent Hf TDMC model age populations: ca. 2400 Ma, ca. 1400 Ma and ca. 1100 Ma. The Hf-data shows a significant input of juvenile crust in addition to crustal recycling. We interpret these three phases of juvenile crustal addition to phases of global growth of continental crust (~ 2400 Ma), the addition of juvenile crust during the breakup of the Columbia supercontinent (~ 1400 Ma) and the assembly of Rodinia (~ 1100 Ma).  相似文献   

12.
Northeastern China is suited in the eastern part of the Central Asian Orogenic Belt, and it is mainly composed of Erguna Massif, Xing'an Massif, Songnen-Zhangguangcai Range Massif, Jiamusi Massif, and Nadanhada Terrane. The Late Paleozoic magmatism was relatively intense accompanied with multiple stages of amalgamation in several microcontinents, therefore these magmatic products are an important media in recording the Late Paleozoic tectonic evolution history of the northeastern China. According to the petrological, geochronological, and geochemical characteristics of Late Paleozoic igneous rocks in the northeastern China, we found that the Late Paleozoic magmatism was based on Carboniferous -Permian igneous rocks. The Early Carboniferous magmatic products are gabbro, diorite and granite, the Late Carboniferous magmatic products are mainly composed of granitoids with minor gabbro, and the Permian magmatic products are mainly granitoids. Meanwhile, these Late Paleozoic igneous rocks mostly exhibit typical arc characteristics. In addition, the Late Paleozoic igneous rocks in eastern Jilin and Heilongjiang provinces are mainly Permian granitoids with minor gabbro, and these Permian igneous rocks show typical arc characteristics. Combined with petrological, geochronological, geochemical and isotopic characteristics, we suggest that the Late Paleozoic igneous rocks in the Great Xing'an Range and eastern Jilin and Heilongjiang provinces underwent different magmatic evolution history, and the microcontinents in NE China had different crustal growth history.  相似文献   

13.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

14.
The Eastern Qinling Orogen (EQO) is a major composite collisional zone located between the North China and the Yangtze cratons. This contribution combines geological and Hf–isotopic data from magmatic rocks associated with mineralization to gain insights into links between the crust architecture and metallogeny, and to focus exploration in the orogen.The new zircon U–Pb dates reported in this study are 434 ± 2 Ma for diorite, 433 ± 2 and 436 ± 2 Ma for monzogranite, and 454 ± 2 Ma for granodiorite in the Nanzhao area; 225 ± 2 Ma for syenite and 160 ± 1 Ma for monzogranite at Songxian; and 108 ± 1 and 102 ± 1 Ma for syenogranite in eastern Fangcheng. Combining our data with those from the entire EQO reveals seven major magmatic events since the Cambrian. These magmatic events took place during the Cambrian–Silurian associated with subduction, Early Devonian magmatism related to a collisional event, Early Permian to Late Triassic magmatism related to subduction, Late Triassic collisional magmatism, Late Triassic to Early Jurassic post–collision magmatism, and Jurassic–Cretaceous magmatism during intra–continental subduction.Lu-Hf isotopic data collected from granitic rocks for this study give εHf(t) values of: − 1.4 to 10.9 for diorite and monzogranite at Nanzhao; − 27.1 to − 15.6 for syenite and − 27.5 to − 25.1 for monzogranite at Songxian; and − 12.9 to − 3.4 for syenogranite in the eastern Fangcheng. Combining Hf isotopic data for the EQO from previous studies, we have evaluated the spatio–temporal distribution of Hf isotopic compositions. The resultant Hf isotopic maps highlight the location of the Kuanping Suture as an important tectonic boundary between the North China and the Yangtze cratons, which separates the EQO into a north part with an old and reworked lower crust and a southern part representing a juvenile lower crust.The Hf isotopic mapping of the EQO also provides information on the distribution of mineral deposits. Porphyry and porphyry–skarn Mo(–W) deposits are associated with magmatic rocks were emplaced in zones with low–εHf and high TDMc values representing old and reworked crustal components. In contrast, porphyry and porphyry–skarn Cu(–Mo) deposits are associated with magmatic rocks emplaced in domains with variable εHf and TDMc values characterized by dominantly reworked old crustal components with minor juvenile material. The magmatic source for the intrusions is characterized by low–εHf and high TDMc values, which are granite–related Mo or Pb–Zn–Ag mineralization.  相似文献   

15.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

16.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

17.
There is ongoing debate as to the subduction direction of the Bangong–Nujiang Ocean during the Mesozoic (northward, southward or bidirectional subduction). Arc-related intermediate to felsic intrusions could mark the location of the subduction zone and, more importantly, elucidate the dominant geodynamic processes. We report whole rock geochemical and zircon U–Pb and Hf isotopic data for granitoids from the west central Lhasa subterrane (E80° to E86°). All rocks show metaluminous to peraluminous, calc-alkaline signatures, with strong depletion of Nb, Ta and Ti, enrichment of large ion lithophile elements (e.g., Cs, Rb, K), a negative correlation between SiO2 and P2O5, and a positive correlation between Rb and Th. All these features are indicative of I-type arc magmatism. New zircon U–Pb results, together with data from the literature, indicate continuous magmatism from the Late Jurassic to the Early Cretaceous (160 to 130 Ma). Zircon U–Pb ages for samples from the northern part of the west central Lhasa subterrane (E80° to E82°30′) yielded formation ages of 165 to 150 Ma, whereas ages of 142 to 130 Ma were obtained on samples from the south. This suggests flat or low-angle subduction of the Bangong–Nujiang Ocean, consistent with a slight southward decrease in zircon εHf(t) values for Late Jurassic rocks. Considering the crustal shortening, the distance from the Bangong–Nujiang suture zone, and a typical subduction zone melting depth of ~ 100 km, the subduction angle was less than 14° for Late Jurassic magmatism in the central Lhasa interior, consistent with flat or low-angle subduction. Compared with Late Jurassic rocks (main εHf(t) values of − 16 to − 7), Early Cretaceous rocks (145 to 130 Ma) show markedly higher εHf(t) values (mainly − 8 to 0), possibly indicating slab roll-back, likely caused by slab foundering or break-off. Combined with previously published works on arc magmatism in the central Lhasa and west part of the southern Qiangtang subterranes, our results support the bidirectional subduction of the Bangong–Nujiang Ocean along the Bangong–Nujiang Suture Zone, and indicates flat or low-angle southward subduction (165 to 145 Ma) followed by slab roll-back (145 to 130 Ma).  相似文献   

18.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

19.
Well-preserved primary contact relationships between a Late Proterozoic metasedimentary and the metagranitic core and Palaeozoic cover series of the Menderes Massif have been recognized in the eastern part of the Çine submassif on a regional-scale. Metaconglomerates occur as laterally discontinuous channel-fill bodies close the base of the metaquartzarenite directly above the basement. The pebbles in the metaconglomerates consist mainly of different types of tourmaline-rich leucocratic granitoids, tourmalinite and schist in a sandy matrix. Petrographic features, geochemical compositions and zircon radiometric ages (549.6 ± 3.7–552.3 ± 3.1 Ma) of the diagnostic clasts of the metaconglomerates (e.g. leucocratic granitoids and tourmalinites) show excellent agreement with their in situ equivalents (549.0 ± 5.4 Ma) occurring in the Pan-African basement as stocks and veins.The correlation between clasts in the metaconglomerates and granitoids of the basement suggests that the primary contact between the basement and cover series is a regional unconformity (supra-Pan-African Unconformity) representing deep erosion of the Pan-African basement followed by the deposition of the cover series. Hence the usage of ‘core–cover’ terminology in the Menderes Massif is valid. Consequently, these new data preclude the views that the granitic precursors of the leucocratic orthogneisses are Tertiary intrusions.  相似文献   

20.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号