首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6–2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.  相似文献   

2.
《Quaternary Research》2014,81(3):400-423
The way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~ 8 ± 1 Ma followed by stepwise accelerated rise at ~ 3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~ 1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~ 8 Ma and later also with the global cooling since ~ 3.2 Ma, suggesting a major role for tectonic forcing of the cooling.  相似文献   

3.
The Tibetan Plateau (TP) is the highest plateau in the world, which has been the focus of Cenozoic geological studies. The Northeast Tibetan Plateau (NETP) is a key location to decipher the Cenozoic evolution history of the TP. Understanding the building of the Qimen Tagh Mountains located in NETP will help to constrain the development of the northern boundary of the main TP, test the existence of a Paleo-Qaidam Basin and test the eastward growth model of the TP. In this study, granite samples from the Qimen Tagh Mountains were dated by LA-ICPMS and apatite fission track (AFT). The LA-ICPMS zircon U–Pb ages give two magmatic events around ~ 405 and ~ 255 Ma from two different sites. AFT modeling shows that the initial uplift took place at ~ 40–30 Ma in these mountains, which should be controlled by the Altyn Tagh Fault. Compiling previously low-temperature thermochronometry results, it reveals that the initial Cenozoic uplift of the northern boundary of the TP (Qimen Tagh and East Kunlun mountains), soon after the India–Eurasia collision in the southern TP, has divided the Paleo-Qaidam Basin into several sub-basins. The approximate NE–E growth process occurred along the lithospheric Altyn Tagh and Kunlun faults. The current basin and range morphology of the NETP took place around ~ 8 Ma.  相似文献   

4.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

5.
The tectonic evolution of the Indian plate, which started in Late Jurassic about 167 million years ago (~ 167 Ma) with the breakup of Gondwana, presents an exceptional and intricate case history against which a variety of plate tectonic events such as: continental breakup, sea-floor spreading, birth of new oceans, flood basalt volcanism, hotspot tracks, transform faults, subduction, obduction, continental collision, accretion, and mountain building can be investigated. Plate tectonic maps are presented here illustrating the repeated rifting of the Indian plate from surrounding Gondwana continents, its northward migration, and its collision first with the Kohistan–Ladakh Arc at the Indus Suture Zone, and then with Tibet at the Shyok–Tsangpo Suture. The associations between flood basalts and the recurrent separation of the Indian plate from Gondwana are assessed. The breakup of India from Gondwana and the opening of the Indian Ocean is thought to have been caused by plate tectonic forces (i.e., slab pull emanating from the subduction of the Tethyan ocean floor beneath Eurasia) which were localized along zones of weakness caused by mantle plumes (Bouvet, Marion, Kerguelen, and Reunion plumes). The sequential spreading of the Southwest Indian Ridge/Davie Ridge, Southeast Indian Ridge, Central Indian Ridge, Palitana Ridge, and Carlsberg Ridge in the Indian Ocean were responsible for the fragmentation of the Indian plate during the Late Jurassic and Cretaceous times. The Réunion and the Kerguelen plumes left two spectacular hotspot tracks on either side of the Indian plate. With the breakup of Gondwana, India remained isolated as an island continent, but reestablished its biotic links with Africa during the Late Cretaceous during its collision with the Kohistan–Ladakh Arc (~ 85 Ma) along the Indus Suture. Soon after the Deccan eruption, India drifted northward as an island continent by rapid motion carrying Gondwana biota, about 20 cm/year, between 67 Ma to 50 Ma; it slowed down dramatically to 5 cm/year during its collision with Asia in Early Eocene (~ 50 Ma). A northern corridor was established between India and Asia soon after the collision allowing faunal interchange. This is reflected by mixed Gondwana and Eurasian elements in the fossil record preserved in several continental Eocene formations of India. A revised India–Asia collision model suggests that the Indus Suture represents the obduction zone between India and the Kohistan–Ladakh Arc, whereas the Shyok-Suture represents the collision between the Kohistan–Ladakh arc and Tibet. Eventually, the Indus–Tsangpo Zone became the locus of the final India–Asia collision, which probably began in Early Eocene (~ 50 Ma) with the closure of Neotethys Ocean. The post-collisional tectonics for the last 50 million years is best expressed in the evolution of the Himalaya–Tibetan orogen. The great thickness of crust beneath Tibet and Himalaya and a series of north vergent thrust zones in the Himalaya and the south-vergent subduction zones in Tibetan Plateau suggest the progressive convergence between India and Asia of about 2500 km since the time of collision. In the early Eohimalayan phase (~ 50 to 25 Ma) of Himalayan orogeny (Middle Eocene–Late Oligocene), thick sediments on the leading edge of the Indian plate were squeezed, folded, and faulted to form the Tethyan Himalaya. With continuing convergence of India, the architecture of the Himalayan–Tibetan orogen is dominated by deformational structures developed in the Neogene Period during the Neohimalayan phase (~ 21 Ma to present), creating a series of north-vergent thrust belt systems such as the Main Central Thrust, the Main Boundary Thrust, and the Main Frontal Thrust to accommodate crustal shortening. Neogene molassic sediment shed from the rise of the Himalaya was deposited in a nearly continuous foreland trough in the Siwalik Group containing rich vertebrate assemblages. Tomographic imaging of the India–Asia orogen reveals that Indian lithospheric slab has been subducted subhorizontally beneath the entire Tibetan Plateau that has played a key role in the uplift of the Tibetan Plateau. The low-viscosity channel flow in response to topographic loading of Tibet provides a mechanism to explain the Himalayan–Tibetan orogen. From the start of its voyage in Southern Hemisphere, to its final impact with the Asia, the Indian plate has experienced changes in climatic conditions both short-term and long-term. We present a series of paleoclimatic maps illustrating the temperature and precipitation conditions based on estimates of Fast Ocean Atmospheric Model (FOAM), a coupled global climate model. The uplift of the Himalaya–Tibetan Plateau above the snow line created two most important global climate phenomena—the birth of the Asian monsoon and the onset of Pleistocene glaciation. As the mountains rose, and the monsoon rains intensified, increasing erosional sediments from the Himalaya were carried down by the Ganga River in the east and the Indus River in the west, and were deposited in two great deep-sea fans, the Bengal and the Indus. Vertebrate fossils provide additional resolution for the timing of three crucial tectonic events: India–KL Arc collision during the Late Cretaceous, India–Asia collision during the Early Eocene, and the rise of the Himalaya during the Early Miocene.  相似文献   

6.
The large, newly discovered Sharang porphyry Mo deposit and nearby Yaguila skarn Pb–Zn–Ag (–Mo) deposit reside in the central Lhasa terrane, northern Gangdese metallogenic belt, Tibet. Multiple mineral chronometers (zircon U–Pb, sericite 40Ar–39Ar, and zircon and apatite (U–Th)/He) reveal that ore-forming porphyritic intrusions experienced rapid cooling (> 100 °C/Ma) during a monotonic magmatic–hydrothermal evolution. The magmatic–hydrothermal ore-forming event at Sharang lasted ~ 6.0 Myr (~ 1.8 Myr for cooling from > 900 to 350 °C and ~ 4.0 Myr for cooling from 350 to 200 °C) whereas cooling was more prolonged during ore formation at Yaguila (~ 1.8 Myr from > 900 to 500 °C and a maximum of ~ 16 Myr from > 900 to 350 °C). All porphyritic intrusions in the ore district experienced exhumation at a rate of 0.07–0.09 mm/yr (apatite He ages between ~ 37 and 30 Ma). Combined with previous studies, this work implies that uplift of the eastern section of the Lhasa terrane expanded from central Lhasa (37–30 Ma) to southern Lhasa (15–12 Ma) at an increasing exhumation rate. All available geochronologic data reveal that magmatic–hydrothermal–exhumation activities in the Sharang–Yaguila ore district occurred within four periods of magmatism with related mineralization. Significant porphyry-type Mo mineralization was associated with Late Cretaceous–Eocene felsic porphyritic intrusions in the central Lhasa terrane, resulting from Neotethyan oceanic subduction and India–Asia continental collision.  相似文献   

7.
Cenozoic volcanism on the Tibetan plateau, which shows systematic variations in space and time, is the volcanic response to the India–Asia continental collision. The volcanism gradually changed from Na-rich + K-rich to potassic–ultrapotassic + adakitic compositions along with the India–Asia collision shifting from contact-collision (i.e. “soft collision” or “syn-collision”) to all-sided collision (i.e. “hard collision”). The sodium-rich and potasium-rich lavas with ages of 65–40 Ma distribute mainly in the Lhasa terrane of southern Tibet and subordinately in the Qiangtang terrane of central Tibet. The widespread potassic–ultrapotassic lavas and subordinate adakites were generated from ~ 45 to 26 Ma in the Qiangtang terrane of central Tibet. Subsequent post-collisional volcanism migrated southwards, producing ultrapotassic and adakitic lavas coevally between ~ 26 and 8 Ma in the Lhasa terrane. Then potassic and minor adakitic volcanism was renewed to the north and has become extensive and semicontinuous since ~ 20 Ma in the western Qiangtang and Songpan–Ganze terranes. Such spatial–temporal variations provide important constraints on the geodynamic processes that evolved at depth to form the Tibetan plateau. These processes involve roll-back and break-off of the subducted Neo-Tethyan slab followed by removal of the thickened Lhasa lithospheric root, and consequently northward underthrusting of the Indian lithosphere. The Tibetan plateau is suggested to have risen diachronously from south to north. Whereas the southern part of the plateau may have been created and maintained since the late-Oligocene, the northern plateau would have not attained its present-day elevation and size until the mid-Miocene when the lower part of the western Qiangtang and Songpan–Ganze lithospheres began to founder and detach owing to the persistently northward push of the underthrust Indian lithosphere.  相似文献   

8.
The Hoh Xil Basin, lying in the central Tibetan Plateau, is key to understanding the Cenozoic tectonics, paleoelevation and paleoclimate changes that have occurred in the Tibetan Plateau since the collision of the Indian and Asian tectonic plates. However, the stratigraphic age and paleoelevation indicated by the sediments of the Hoh Xil Basin remain hotly debated. Here we report on one palynological record from the TTH-C section, extracted from the Yaxicuo Group (the stratigraphic unit between the Fenghuoshan and Wudaoliang groups), and analyze its implications for stratigraphic age, paleoclimate and paleoelevation in the Hoh Xil Basin. The record shows that palynological taxa are mainly dominated by xerophytic Ephedripites, Nitrariadites (Nitrariapollis) and Chenopodipollis, with few ferns and conifers. Rich morphologies correspond well with those in the Xia Ganchaigou Formation (Fm) of the Qaidam Basin to the north. Palynological percentages are well correlated with the middle member of the Xia Ganchaigou Fm in the Qaidam Basin as well as the lower member of the Mahalagou Fm in the Xining Basin to the northeast. The ages of the middle member of the Xia Ganchaigou and lower member of the Mahalagou Fms from these two basins are both identical to the Bartonian Stage (~ 40–37 Ma) of the Late Eocene, according to their respective high-resolution magnetostratigraphic dating. This means that the age of the Yaxicuo Group at least covers the Bartonian Stage. Besides the Qaidam and Xining basins, the palynological assemblages of the TTH-C section are also similar to those of three other sites (the Jiuquan, Tu-ha and Hetao basins), indicating similarly arid climates dominated by a northwestern Chinese subtropical high, and a relatively low paleoelevation in the Hoh Xil Basin (mostly < 2000 m a.s.l.) in the Late Eocene.  相似文献   

9.
《Gondwana Research》2016,29(4):1482-1499
The Lhasa terrane, the main tectonic component of the Himalayan–Tibetan orogen, has received much attention as it records the entire history of the orogeny. The occurrence of Permian to Triassic high-pressure eclogites has a significant bearing on the understanding of the Paleo-Tethys subduction and plate suturing processes in this area. An eclogite from the Bailang, eastern Lhasa terrane, was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, Sm–Nd and Ar–Ar multichronometric approach. Pseudosection modeling combined with thermobarometric calculations indicate that the Bailang eclogite equilibrated at peak PT conditions of ~ 2.6 GPa and 465–503 °C, which is much lower than those of Sumdo and Jilang eclogites in this area. Garnet–whole rock–omphacite Lu–Hf and Sm–Nd ages of 238.1 ± 3.6 Ma and 230.0 ± 4.7 Ma were obtained on the same sample, which are largely consistent with the corresponding U–Pb age of 227.4 ± 6.4 Ma for the metamorphic zircons within uncertainty. The peak metamorphic temperature of the sample is lower than the Lu–Hf and Sm–Nd closure temperatures in garnet. This, combined with the core-to-rim decrease in Mn and HREE concentrations, the slightly U-shaped Sm zonation across garnet and the exclusive occurrence of omphacite inclusion in garnet rim, are consistent with the Lu–Hf system skewing to the age of the garnet core and the Sm–Nd system favoring the rim age. The Sm–Nd age was thus interpreted as the age of eclogite-facies metamorphism and the Lu–Hf age likely pre-dated the eclogite-facies metamorphism. 40Ar/39Ar dating of hornblende from the eclogite yielded ages about 200 Ma, which is interpreted as a cooling age and is probably indicative of the time of exhumation to the middle crust. The difference of peak eclogite-facies metamorphic conditions and the distinct metamorphic ages for the Bailang eclogite (~ 2.6 GPa and ~ 480 °C; ca. 230 Ma), the Sumdo eclogite (~ 3.4 GPa and ~ 650 °C; ca. 262 Ma) and Jiang eclogite (~ 3.6 GPa and ~ 750 °C; ca. 261 Ma) in the same (ultra)-high-pressure belt indicate that this region likely comprises different slices that had distinct PT histories and underwent (U)HP metamorphism at different times. The initiation of the opening the Paleo-Tethys Ocean in the Lhasa terrane could trace back to the early Permian. The ultimate closure of the Paleo-Tethys Ocean in the Lhasa terrane was no earlier than ca. 230 Ma.  相似文献   

10.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

11.
Western Tibet, between the Karakorum fault and the Gozha–Longmu Co fault system, is mostly internally drained and has a 1.5–2 km amplitude relief with km-large valleys. We investigate the origin of this peculiar morphology by combining a topography analysis and a study of the Cenozoic sedimentation in this area. Cenozoic continental strata correspond to a proximal, detrital fan deposition, and uncomformably rest on a palaeorelief similar to the modern one. Zircon U–Pb dating from trachytic flows interbedded within the Cenozoic continental sediments indicates that detrital sedimentation occurred at least between ca 24 and 20 Ma in the Shiquanhe basin, while K/Ar ages suggest it may have started since ~ 37 Ma in the Zapug basin. The distribution of continental deposits shows that present-day morphology features, including km-large, 1500 m-deep valleys, were already formed by Early Miocene times. We suggest that today's internally drained western Tibet was externally drained, at least during late Miocene, contemporaneously with early motion along the Karakorum Fault. Detailed study of the present day river network is compatible with a dextral offset on the Karakorum Fault of 250 km at a rate of ~ 10 ± 1 mm/yr. Displacement along the Karakorum fault possibly induced the shift from external to an internal drainage system, by damming of the Bangong Co ~ 4 Ma ago, leading to the isolation and preservation of the western Tibet relief.  相似文献   

12.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

13.
We present new U–Pb isotopic age data for detrital zircons from 16 deformed sandstones of the Ross Supergroup in north Victoria Land, Antarctica. Zircon U/Th ratios primarily point to dominantly igneous parent rocks with subordinate contributions from metamorphic sources. Comparative analysis of detrital zircon age populations indicates that inboard stratigraphic successions (Wilson Terrane) and those located outboard of the East Antarctic craton (the Bowers and Robertson Bay terranes) have similar ~ 1200–950 Ma (Mesoproterozoic–Neoproterozoic) and ~ 700–490 Ma (late Neoproterozoic–Cambrian, Furongian) age populations. The affinity of the age populations of the sandstones to each other, as well as Gondwana sources and Pacific-Gondwana marginal stratigraphic belts, challenges the notion that the outboard successions form exotic terranes that docked with Gondwana during the Ross orogeny and instead places the terranes in proximity to each other and within the peri-Gondwana realm during the late Neoproterozoic to Cambrian. The cumulative zircon age suite from north Victoria Land yields a polymodal age spectra with a younger, primary 700–480 Ma age population that peaks at ~ 580 Ma. Cumulative analysis of zircons with elevated U/Th ratios (> 20) indicating metamorphic heritage yield ~ 657–532 Ma age probability peaks, which overlap with the younger dominantly igneous zircon population. The data are interpreted to give important new evidence that is consistent with ongoing convergent arc magmatism by ~ 626 Ma, which provided the dominant zircon-rich igneous rocks and subordinate metamorphic rocks. Maximum depositional ages as young as ~ 493–481 Ma yielded by deformed sequences in the outboard Bowers and Robertson Bay terrane samples provide new support for late Cambrian to Ordovician deformation in outboard sectors of the orogen, consistent with tectonic models that call for cyclic phases of contraction along the north Victoria Land sector of the Ross–Delamerian orogen.  相似文献   

14.
Late-stage Pan-African granitoids, including monzogranite, syenogranite and alkali granite, were collected from four separate localities in Sinai. They were selected to represent both the calc-alkaline and alkaline suites that have been viewed as forming separate magmatic episodes in the Eastern Desert of Egypt, with the transition to alkali granite at ~ 610 Ma taken to mark the onset of crustal extension. Although intrusive relations were observed in the field, the emplacement ages of the granitoids cannot be distinguished within analytical uncertainty and they all formed within a restricted time span from 579 to 594 Ma. This indicates that the two suites are coeval and that some calc-alkaline rocks were also likely generated during the late extensional phase. These ages are identical to those recently obtained from similar rocks in the North-Eastern Desert, confirming that Sinai is the northern extension of the Eastern Desert Pan-African terrane of Egypt. Rare inherited zircons with ages of ~ 1790 and ~ 740 Ma are present in syenogranite from northeastern Sinai and indicate that older material is present within the basement. A few zircons record younger ages and, although some may reflect later disturbance of the main zircon population, those with ages of ~ 570 and 535 Ma probably reflect thermal events associated with the extensive emplacement of mafic and felsic dykes in both northeastern and southern Sinai.  相似文献   

15.
On the northeastern slope of the Kuznetsk Alatau, small differentiated alkaline basic intrusive massifs form an isometric area ~ 100 km across. They are composed of subalkalic and alkali gabbroids, basic and ultrabasic foidolites, nepheline and alkali syenites, and carbonatites. Results of complex (U–Pb, Sm–Nd, and Rb–Sr) isotope dating suggest that alkaline basic magmatism developed at two stages, in the Middle Cambrian–Early Ordovician (~ 510–480 Ma) and in the Early–Middle Devonian (~ 410–385 Ma). Finding of accessory zircons (age 1.3–2.0 Ga) in alkaline rocks suggests that the ascent of mantle plume was accompanied by the melting of fragments of Proterozoic mature continental crust composing the basement of the Caledonian orogen of the Kuznetsk Alatau. Probably, parental Cambrian–Ordovician alkaline mafic melts initiated metasomatism and lithosphere erosion. During the next melting of lithosphere substrate in ~ 100 Myr, this caused the generation of magmas of similar composition with inherited isotope parameters (εNd(T)  + 4.8 to + 5.7, TNd(DM)  0.8–0.9 Ga) pointing to the similar nature of their matter sources in the moderately depleted mantle.  相似文献   

16.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

17.
The E-W to WNW-ESE striking Kunlun Fault Zone, extending about 1600 km, is one of the large strike-slip faults in the northern Tibet, China. As a major strike-slip fault, it plays an important role on the extrusion of Tibet Plateau in accommodating northeastward shortening caused by the India-Asia convergence. However, the time of initiation left-lateral faulting of the Kunlun Fault Zone is still largely debated, ranging from the Middle to Late Triassic (240–200 Ma) to early Quaternary (2 Ma). We document displaced basement rocks and geomorphic features along the Kunlun Fault Zone, based on tectono-geomorphic interpretation of satellite remote sensing images and field geologic and geomorphic observations. Our results show that the largest cumulative offset of basement rocks is likely to be 100 ± 20 km. Meanwhile, a series of pull-apart basins (Kusai, Xiugou and Tuosu lake basins) and pressure ridges (East Deshuiwai and Maji Snow Mountains), each 45–70 km long and ∼8–12 km wide, are developed along the Kunlun Fault Zone, which resulted from long-term tectono-geomorphic growth since the Late Miocene or Early Pliocene. Geologic evidence indicates that the Kunlun Fault Zone had a long-term slip rate of ca.10 mm/yr during the late Quaternary. This slip rate is similar to that shown by present-day GPS measurements. Thus, we estimate that the Kunlun Fault Zone probably began left-lateral faulting at 10 ± 2 Ma based on a total displacement of 100 ± 20 km, and assuming a constant long-term slip rate of ca.10 mm/yr for several millions of years. And this timing constraint on initiation of left-lateral faulting of the Kunlun Fault Zone is consistent with widespread tectonic deformation which occurred in the Tibetan Plateau.  相似文献   

18.
《Quaternary Research》2014,81(3):433-444
A high-resolution rock magnetic investigation was performed on the Chaona Quaternary loess/paleosol sequences in the Central Chinese Loess Plateau. Based on a newly developed independent unturned time scale and magnetic records, we reconstructed the history of the East Asia monsoons during the last 3 Ma and explored the middle Pleistocene climate transition (MPT). Rock magnetic results show that the loess layers are characterized by relatively high coercivity and remanent coercivity, lower magnetic susceptibility (MS), and that the paleosol layers are characterized by relatively high MS, saturation magnetization and remanent saturation magnetization. Spectrum analyses indicate that there are various periods in addition to orbital periodicities. According to the onset and stable appearance of 100 kyr period, we consider that the MPT recorded in this section began at ~ 1.26 Ma and was completed by ~ 0.53 Ma, which differs from previous investigations based on orbitally tuned time scales. The forcing mechanism for the MPT was more complicated than just the orbital forcing. We conclude that the rapid uplift of the Tibetan Plateau may have played an important role in the shift of periodicities during the middle Pleistocene.  相似文献   

19.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

20.
The Sanjiang Tethyan Metallogenic Domain (STMD) is an important part of the Tethyan giant metallogenic belt. The Yidun Arc is a part of the STMD in the eastern Tibetan Plateau. Recently, four newly discovered Mo–Cu–(W) ore deposits related to granitic intrusions were found distributed along the north-south strike in the southern Yidun Arc, which are identified as the Xiuwacu, Relin, Hongshan, and Tongchanggou deposits herein. These four deposits formed along high-angle north-northwest or north-west strike-slip faults, with vein-type and porphyry-type Mo–Cu mineralization developed in the intrusions. Molybdenite Re–Os and zircon U–Pb dating together with zircon Hf isotopes and whole-rock geochemistry of the intrusions were studied to discern the relationship between mineralization and magmatism, metallogenesis, and tectonic settings. Molybdenite from skarn-type mineralization at the Hongshan deposit has a Re–Os isochron age of 81.2 ± 2.6 Ma (MSWD = 1.3, n = 5) consistent with previously published zircon U–Pb ages and Re–Os ages of porphyry-type Mo mineralization. These results indicate that the Hongshan is a Late Cretaceous porphyry-skarn Cu–Mo deposit. Zircon U–Pb ages of the granitic intrusions in the Xiuwacu, Relin, and Tongchanggou deposits varying from ~ 87.4 Ma to ~ 82.7 Ma. Combined with published molybdenite Re–Os age spectrum (~ 85 Ma to ~ 81.2 Ma), it is proposed that the Mo–Cu–(W) mineralization in the Shangri-La region is spatially, temporally, and probably genetically related to the Late Cretaceous granitic intrusions. The Relin, Hongshan, and Tongchanggou intrusions have high SiO2 (65.2–70.0 wt.%), Sr (363–905 ppm), Sr/Y (22–72), and La/Yb (37–69) ratios, and low Y (11.6–17.0 ppm) and Yb (0.97–1.59 ppm), which displayed adakitic affinities. Their low MgO (0.66–1.44 wt.%), Mg# (25–46), variable negative zircon εHf(t) values (− 7.9 to − 2.3), and Proterozoic two-stages Hf model ages (TDM2 = 1.13–1.62 Ga) suggest that they were probably dominantly derived from partial melting of thickened lower continental crust. According to the tectonic evolution of the Bangong Meso-Tethys Ocean during the Late Mesozoic, the Late Cretaceous igneous event and mineralization in the Yidun Arc likely formed under a late- or post-collision extensional environment, probably related to the collision between the Lhasa and Qiangtang terranes during the Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号