首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 36 毫秒
1.
The Working Group I report of the Sixth Assessment Report(AR6)of the Intergovernmental Panel on Climate Change(IPCC)was released in August 2021. Base on updated and expanding data, AR6 presented the improved assessment of past changes and processes of cryosphere. AR6 also predicted the future changes us⁃ ing the models in CMIP6. The components of cryosphere were rapid shrinking under climate warming in the last decade. There were decreasing trends in Arctic sea-ice area and thickness. Sea-ice loss was significant. The Greenland Ice Sheet, the Antarctic Ice Sheet and all glaciers lost more mass than in any other decade. Global warming over the last decades had led to widespread permafrost warming, active layer thickness increasing and subsea permafrost extent reducing. Snow cover extent in the Northern Hemisphere also decreased significantly. However, the variations of snow depth and snow water equivalent showed great spatial heterogeneity. The rapid shrinking of the cryosphere accelerated the global mean sea level rise. The impact of human activities on cryo⁃ sphere will become more significant in the future. The Arctic sea-ice area will decrease, and the Arctic Ocean will likely become practically sea ice-free. The Greenland Ice Sheet, the Antarctic Ice Sheet and glaciers will continue to lose mass throughout this century. Permafrost and Northern Hemisphere snow cover extent will con⁃ tinue to decrease as global climate continues to warm. In addition, there are still uncertainties in the prediction of cryosphere due to the absence of observations, the poor sensitivity of models to the components and processes of cryosphere, and the inexplicit represent of the mechanism of light-absorbing impurities. More attentions should be paid on these issues in the future. © 2022 Science Press (China). All rights reserved.  相似文献   

2.
The cryosphere is one of the climate system component which plays an important role in the global biogeochemical mercury cycling. Anthropogenic mercury has been transported to remote cold and high regions worldwide through atmospheric circulation,and then transformed into methylmercury in the cryosphere. As one of the highly toxic environmental pollutants,methylmercury can be greatly bioaccumulated and biomagnified through the food web,which potentially poses threats to human and wildlife as well as the global cryospheric en⁃ vironments. In order to gain a full picture of research progress on methylmercury in the cryosphere,our study comprehensively summarized the concentration levels and analytical methods of methylmercury,and biogeo⁃ chemical processes such as the migration,transformation and fate of methylmercury in various cryospheric envi⁃ ronments including glacier,permafrost,snow ice and sea ice. We particularly made the literature review of mi⁃ crobial mercury methylation and evaluated the risk of methylmercury exposure to human and wildlife in the cryo⁃ sphere. Meanwhile,we focus on distribution,behavior,and environmental effects of methylmercury in the cryosphere against the backdrop of climate change,which is essential for assessing the exposure risk of methyl⁃ mercury to humans and wildlife. Perspectives of methylmercury researches in the cryosphere have also been highlighted in this review,though there is existing a knowledge gap of biogeochemical methylmercury cycling in the low temperature environments which merits further study. © 2023 The Author(s).  相似文献   

3.
We compared the stable carbon isotopic records from a loess transect of the Jiaochang in the eastern Tibetan Plateau, spanning the last ~21,000 years, with multiproxy data for pedogenesis, including magnetic susceptibility, clay fraction, Fed/Fet ratio, carbonate and total organic carbon content, in order to probe the mechanisms of δ13C values of organic matter and Late Quaternary climate variations in the eastern Tibetan Plateau. Our results indicate that there is no simple relationship between δ13C of organic matter and summer monsoon variations. The change in δ13C values of organic matter (in accordance with the ratios of C3 to C4 plants) results from the interaction among temperature, aridity and atmospheric pCO2 level. Drier climate and lower atmospheric pCO2 level contribute to positive carbon isotopic excursion, while negative carbon isotopic excursion is the result of lower temperature and increased atmospheric pCO2 level. Additionally, our results imply that the Tibetan monsoon may play an important role in climate system in the eastern Tibet Plateau, which specifically reflects frequently changing climate in that area. The results provide new insights into the forcing mechanisms on both the δ13C values of organic matter and the local climate system.  相似文献   

4.
The cryosphere constitutes an important subset of the hydrosphere.The Himalayan cryosphere is a significant contributor to the hydrological budget of a large river system such as the Ganges.Basic data on the cryosphere in the Himalaya is inadequate and also has large uncertainties.The data on glacial melt component in the Himalayan rivers of India also shows high variability.The Gangotri glacier which constitutes nearly a fifth of the glacierized area of the Bhagirathi basin represents one of the fastest receding,large valley glaciers in the region which has been surveyed and monitored for over sixty years.The availability of measurement over a long period and relatively small glacier-fed basin for the Bhagirathi river provides suitable constraints for the measurement of the glacial melt fraction in a Himalayan river.Pre- and post-monsoon samples reveal a decreasing trend Of depletion of δ~(18)O in the river water from glacier snout(Gaumukh) to the confluence of the Bhagirathi river with the Alaknanda river near Devprayag.Calculations of existing glacial melt fraction(~ 30%at Rishikesh) are not consistent with the reported glacial thinning rates.It is contended that the choice of unsuitable end-members in the three component mixing model causes the overestimation of glacial melt component in the river discharge.Careful selection of end members provides results(~11%at Devprayag) that are consistent with the expected thinning rates.  相似文献   

5.
Wim Z. Hoek 《《幕》》2008,31(2):226-229
The Last Glacial-Interglacial Transition is one of the most intensively studied periods in Earth History. The rapid climate and environmental changes that occurred during the transition can be used to test ideas about the functioning of our climate system. The stratigraphy of this period has been thoroughly investigated and, in particular, the recently proposed event stratigraphy for the Last Glacial-Interglacial Transition based on the Greenland ice core records serves as a tool for synchronisation of records from the ice, marine and terrestrial environment.  相似文献   

6.
Ecological investigation has been done in some saline lakes in the Vestfold Hills (60°38'S, 78°06' E), East Antarctica. The results show that changes of natural environment and physicalchemical factors, as well as the structure of biotic species and succession do occur in some lakes, due to seasonal and local climate changes and geographic variances in regions. These should be strong ecological proofs to explain that the processes of globle climate change and ice sheet retreating, and isostatic uplift raising, could be continueing in present time, and should be significant to the study on Antarctic and global changes.  相似文献   

7.
Snow is an important part of the cryosphere and plays an important role in the hydrological cycle and energy balance. Study of the spatiotemporal characteristics of snow cover and its change is the prerequisite for analyzing the formation,distribution and variation of runoff from mountains in inland river basins. In this study,we selected the upper reaches of the Taolai River basin of Qilian Mountains as the study area,used down⁃ scaling methods to obtain high-resolution snow depth data,and adopted methods of spatial statistics,sensitivity analysis and contribution separations to quantify snow cover distribution and variation influenced by terrain and the regional climate during the time period from 2002 to 2018. Results showed that basin early average snow depth ranged from 0 cm to 2. 5 cm,with variation from -0. 19 cm·a-1 to 0. 06 cm·a-1. The area of snow depth re⁃ duction during the study period accounted for 68. 30% of the total area. It was found that the snow depth increase more with altitude and less with the increase of slope. Variation of snow depth increased below 2 500 m a. s. l. and decreased above 2 500 m a. s. l. As the slope increases,it first increases and then decreases;the snow depth of each aspect decreases,especially in the northwest orientation. The sensitivity of snow depth to air tempera⁃ ture and solar radiation were found negative in general,while that of the precipitation was found positive. The precipitation in high-altitude areas has a relatively large contribution to the snow depth variation,while in the val⁃ ley areas,the contribution of temperature to snow cover is more significant. This work provides an example for the study of snow dynamics in the upper reaches of inland river watersheds,and benefits model simulation and prediction of mountain runoff and regional water management. © 2023 The Author(s).  相似文献   

8.
Changes in the climatic system introduce uncertainties in the supply and management of water resources. The Intergovernmental Panel on Climate Change(IPCC) predicts an increase of 2 to 4 °C over the next 100 years. Temperature increases will impact the hydrologic cycle by directly increasing the evaporation of surface water sources. Consequently, changes in precipitation will indirectly impact the flux and storage of water in surface and subsurface reservoirs(i.e., lakes, soil moisture, groundwater, etc.). In addition, increases in temperature contribute to increases in the sea level, which may lead to sea water intrusions, water quality deterioration, potable water shortages, etc. Climate change has direct impacts on the surface water and the control of storage in rivers, lakes and reservoirs, which indirectly controls the groundwater recharge process. The main and direct impact of climate change on groundwater is changes in the volume and distribution of groundwater recharge. The impact of climate change on groundwater resources requires reliable forecasting of changes in the major climatic variables and accurate estimations of groundwater recharge. A number of Global Climate Models(GCMs) are available for understanding climate and projecting climate change.These GCMs can be downscaled to a basin scale, and when they are coupled with relevant hydrological models, the output of these coupled models can be used to quantify the groundwater recharge, which will facilitate the adoption of appropriate adaptation strategies under the impact of climate change.  相似文献   

9.
Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in deserts are, however, diverse and different over the globe with regard to their geomorphological nature, human activities and geological histories. In the last decades a great number of efforts have been put to the investigation of the initial timing of the occurrence of arid climate, e. g. in northwestern China. Silty sediments in the downwind directions have been used to deduce the histories of deserts. In general, there is a lack of knowledge about processes and landscapes in Chinese drylands between the initial Miocene silt sedimentation at desert margins and the late Quaternary multiple occurrences of wetter climate with assumed large lakes in many of the deserts in northern China. The geomorphological concept of three primary triggering factors, i.e., the sediment supply, sediment availability and transport capacity of wind, and additionally the underground geology need to be fully considered for a better understanding of the environmental histories of sand seas which should not be viewed as equivalent for deserts because sand seas cover between < 1% and ca. 45% of the desert areas in various continents dependent on a complex interaction between various processes of both exogenous and endogenous origins.  相似文献   

10.
小冰期以来敦德冰芯中微粒含量与沙尘暴及气候的关系   总被引:1,自引:0,他引:1  
刘纯平  姚檀栋 《冰川冻土》1999,21(4):385-390
Determination of microparticles, including >2.0 μm, 2.0~2.5 μm and >5.04 μm in diameter, since the Little Ice Age in the Dunde ice core is presented. Three increasing and three decreasing periods are distinguished since 1400 AD. Among them, the greatest one was from the end of the 17th Century to the early 18th Century. Microparticle concentration variation corresponds to climate change. The higher the microparticle concentration is, the colder and drier the climate is; the lower the microparticle concentration is, the warmer and wetter the climate is. A comparison of microparticle concentration and sand-dust storm frequency indicates that there exits a good relationship. Most of the material deposited on the Dunde ice cap is thought to have originated in the surrounding arid and semi-arid areas, probably transported into the Qilian Mountains by sand-dust storms. When microparticle concentration appears in special values, sand-dust storms would happen.  相似文献   

11.
我国冰冻圈变化的影响在气候变化背景下的识别   总被引:1,自引:1,他引:0  
全球气候变化对自然生态系统和人类社会系统的各个方面产生了很重要的直接影响,其中冰冻圈由于其脆弱性与灵敏性而首当其冲.同样,气候变化通过影响冰冻罔而对自然生态系统和人类社会系统产生很重要的间接影响.通过论述冰冻圈变化的影响,选取较为典型的领域,在时空尺度、作用机制以及影响过程等方面,对气候变化背景下我国冰冻圈变化的具体影响进行了识别.结果表明,气候变化的正面或者负面影响通过冰冻圈变化的作用之后可以加强或者削弱,从而为制定冰冻圈变化的适应对策提供科学依据.  相似文献   

12.
冰冻圈及其变化的脆弱性与适应研究体系   总被引:2,自引:1,他引:1  
冰冻圈及其变化的脆弱性与适应研究是以探索冰冻圈及其变化的脆弱性概念为前提和基础,以冰冻圈变化的自然影响为链接点,以社会经济影响研究为突破,以脆弱性研究为桥梁与纽带,以应对与适应冰冻圈变化影响、风险为目的的冰冻圈科学领域的新兴研究方向。探讨了冰冻圈及其变化的脆弱性概念,并以影响—脆弱性—适应为主线,针对冰冻圈变化的社会经济影响研究、脆弱性研究、适应研究内容及其关键科学问题、脆弱性评估模型、尺度问题进行了较为详细的阐述,初步搭建了中国冰冻圈及其变化的脆弱性与适应研究体系。基于冰冻圈要素的多样性、变化影响的复杂性与显著的区域差异性,从2个梯度勾绘了冰冻圈及其变化的脆弱性与适应研究格局与空间布局。中国冰冻圈及其变化的脆弱性与适应研究除深化冰冻圈变化的影响与脆弱性研究之外,应加强不同利益相关者协同设计、共同参与的冰冻圈变化适应应用研究,并关注冰冻圈灾害风险、渐变风险研究。  相似文献   

13.
冰冻圈是气候系统影响最直接和最敏感的圈层。在全球变化背景下,冰冻圈变化与生物圈、岩石圈、水圈、大气圈、人类圈之间的相互作用日趋加剧。特别地,冰冻圈快速变化对其影响区经济社会系统产生了广泛而深刻的负面影响,甚至危及人类福祉、经济社会系统的健康、和谐、持续发展。鉴于冰冻圈区位劣势及其较为落后的经济水平,其应对冰冻圈变化的能力极为有限。目前,适应仍然是冰冻圈应对气候变化的主要途径。冰冻圈变化对经济社会系统的综合影响分析是适应冰冻圈快速变化的基础,其适应性管理战略则是减轻冰冻圈快速变化不利影响、降低自然和经济社会系统防御其不利影响脆弱性的最终目标。  相似文献   

14.
Microplastics (MPs) pollution has become a serious environmental issue of growing global concern due to the increasing plastic production and usage. Under climate warming, the cryosphere, defined as the part of Earth’s layer characterized by the low temperatures and the presence of frozen water, has been experiencing significant changes. The Arctic cryosphere (e.g., sea ice, snow cover, Greenland ice sheet, permafrost) can store and release pollutants into environments, making Arctic an important temporal sink and source of MPs. Here, we summarized the distributions of MPs in Arctic snow, sea ice, seawater, rivers, and sediments, to illustrate their potential sources, transport pathways, storage and release, and possible effects in this sentinel region. Items concentrations of MPs in snow and ice varied about 1–6 orders of magnitude in different regions, which were mostly attributed to the different sampling and measurement methods, and potential sources of MPs. MPs concentrations from Arctic seawater, river/lake water, and sediments also fluctuated largely, ranging from several items of per unit to >40,000 items m?3, 100 items m?3, and 10,000 items kg?1 dw, respectively. Arctic land snow cover can be a temporal storage of MPs, with MPs deposition flux of about (4.9–14.26) × 108 items km?2 yr?1. MPs transported by rivers to Arctic ocean was estimated to be approximately 8–48 ton/yr, with discharge flux of MPs at about (1.65–9.35) × 108 items/s. Average storage of MPs in sea ice was estimated to be about 6.1×1018 items, with annual release of about 5.1×1018 items. Atmospheric transport of MPs from long-distance terrestrial sources contributed significantly to MPs deposition in Arctic land snow cover, sea ice and oceanic surface waters. Arctic Great Rivers can flow MPs into the Arctic Ocean. Sea ice can temporally store, transport and then release MPs in the surrounded environment. Ocean currents from the Atlantic brought high concentrations of MPs into the Arctic. However, there existed large uncertainties of estimation on the storage and release of MPs in Arctic cryosphere owing to the hypothesis of average MPs concentrations. Meanwhile, representatives of MPs data across the large Arctic region should be mutually verified with in situ observations and modeling. Therefore, we suggested that systematic monitoring MPs in the Arctic cryosphere, potential threats on Arctic ecosystems, and the carbon cycle under increasing Arctic warming, are urgently needed to be studied in future.  相似文献   

15.
Ice-raft debris layers in the North Atlantic sediments of IRD belt characterize abrupt climate variability, corresponding to Heinrich events during the Last Glacial and Heinrich(-like) events beyond the Last Glacial. During Heinrich/(-like) events, the Earth's atmosphere, hydrosphere and cryosphere interacted strongly on the millennial-scale and had a profound impact on the global climate. In more than 30 years of continuous research on Heinrich/(-like) events and their remote response, the results have been more focused on the trigger mechanism and the new distinguished proxies of Heinrich/(-like) events. The first occurrence of Heinrich/(-like) events in IRD belt during MIS 16 was the initiation of a major landmark climate mechanism after MPT. The research on Heinrich/(-like) events may require a new ice sheet dynamics model related to the large ice sheet and the long-term ice age, which is forming a new hot topic.  相似文献   

16.
北极快速增暖背景下冰冻圈变化及其影响研究综述   总被引:1,自引:1,他引:0  
北极具有独特的地理位置和战略地位,是当前全球变化研究的热点区域之一。北极增暖是全球平均值的两倍以上,被称为“北极放大”现象。在北极快速增暖背景下,冰冻圈尤其是海冰显著萎缩,对北极乃至中纬度天气气候产生深远影响。对北极快速增暖背景下冰冻圈主要要素(包括海冰、冰盖、冰川、积雪和冻土)时空变化特征及未来预估进行了综述,同时总结了海冰变化对北极气候系统(大气圈、水圈、岩石圈和生物圈)以及中纬度极端天气气候事件的影响。指出当前北极冰冻圈变化研究受观测资料缺乏及模式模拟不确定等问题限制,其机理及对中纬度天气气候影响机制仍存在争议。未来还需要加强北极地区的综合监测,提高模式对北极气候系统物理过程的模拟能力,进行多模式、多数据、多方法的集成研究。  相似文献   

17.
青藏高原地区特殊的大气圈、水圈、冰冻圈、生物圈等多圈层相互作用过程及其变化,不仅对青藏高原及其周边地区的气候格局和变化有重要影响,而且对东亚、北半球乃至全球的环流形势和异常产生深远影响。为此,全球变化研究重大科学研究计划于2010年9月启动了"青藏高原气候系统变化及其对东亚区域的影响与机制研究"项目,旨在开展青藏高原环境、地表过程、生态系统对全球变化的响应及其对周边地区人类生存环境影响的综合交叉研究,以揭示青藏高原气候系统变化及其对东亚区域的影响机制,提出前瞻性的应对气候变化与异常的策略,减少其导致的区域自然灾害的损失。项目实施近3年来,开展了青藏高原首次"星—机—地"综合立体协同观测试验和大规模地气相互作用综合观测试验。在遥感结合地面观测估算青藏高原地表特征参数和能量通量方法,高原地区上对流层和下平流层结构,高原季风与东亚季风和南亚季风之间的内在联系,中国及青藏高原地区太阳辐射和风速的年代际变化趋势,青藏高原春季感热源减弱及其对亚洲夏季风和中国东部降水的影响,以及极高海拔地区土地覆被格局等方面取得了一些突出进展。  相似文献   

18.
政府间气候变化专门委员会(IPCC)于2021年8月发布了第六次评估报告第一工作组报告《气候变化2021:自然科学基础》。该报告基于最新的观测和模拟研究,评估了冰冻圈变化的现状,并采用CMIP6模式对未来变化进行了预估。报告明确指出,近十多年来冰冻圈呈现加速萎缩状态:北极海冰面积显著减小、厚度减薄、冰量迅速减少;格陵兰冰盖、南极冰盖和全球山地冰川物质亏损加剧;多年冻土温度升高、活动层增厚,海底多年冻土范围减少;北半球积雪范围也在明显变小,但积雪量有较大空间差异。冰冻圈的快速萎缩加速海平面的上升。未来人类活动对冰冻圈萎缩的影响将愈加显著,从而导致北极海冰面积继续减少乃至消失,冰盖和冰川物质将持续亏损,多年冻土和积雪的范围继续缩减。报告也提出,目前冰冻圈研究仍存在观测资料稀缺、模型对各影响因素的敏感性参数和过程描述亟需提升、对吸光性杂质的变化机制认知不足等问题,从而影响了对冰冻圈变化预估的准确性,未来需要重点关注。  相似文献   

19.
冰川/积雪-大气相互作用研究进展   总被引:10,自引:9,他引:1  
杨兴国  秦大河  秦翔 《冰川冻土》2012,34(2):392-402
冰川和积雪是冰冻圈的重要组成部分,在全球或区域气候系统中起着极其重要的作用.开展冰川/积雪-大气相互作用研究,是研究冰冻圈物理过程及其对气候系统反馈作用的必然需求,也是研究冰川/积雪对气候变化响应的有效手段,同时还可为全球(区域)气候和水文模式提供冰川/积雪面的地表特征参数.近一个世纪以来,在冰川/积雪面辐射特征、能量通量计算方法和平衡特征等方面开展了许多观测试验和理论研究,并取得了卓有成效的研究结果.但是在准确获取辐射通量、研发普适性较强的反照率参数化方案、复杂地形条件下能量通量的计算,以及发展分布式能量平衡模式等方面尚存在许多不确定性,仍面临许多技术难点,也是未来的研究重点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号