首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A compiled database of shear wave velocity measurements in a variety of clays, silts and sands shows directional hierarchies between downhole (VsVH), standard crosshole (VsHV), and rotary crosshole (VsHH) tests. The special in situ database has been collected from 33 well-documented geotechnical test sites. Expressions relating the small-strain shear modulus in terms of effective confining stress level, stress history and void ratio are explored for each of these three modes of directional shear wave velocity. The relationships are separated initially into soil groups (intact clays, fissured clays, sands and silts), and then generalised to consider all soil types together.  相似文献   

3.
An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
饱和土体静态液化失稳理论预测   总被引:1,自引:0,他引:1  
吕玺琳  赖海波  黄茂松 《岩土力学》2014,35(5):1329-1333
通过在屈服准则和剪胀性方程中引入材料状态参数,建立了一个与材料状态相关的本构模型,用于模拟不同初始孔隙比和围压下土体的应力-应变关系。基于二阶功理论,建立了饱和土体静态液化失稳理论判别准则。通过预测一系列饱和松砂三轴不排水试验结果,验证了所建立的本构模型及判别预测准则的合理性。分析结果表明,静态液化发生于土体硬化阶段,静态液化触发伴随着剪应力达到峰值,其后剪应力降低且孔隙水压力持续增长。进一步地,模拟了充分降解的城市固体废弃物在不排水条件下的应力-应变特性,并预测到了潜在失稳线及静态液化触发点。  相似文献   

5.
6.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Dense sands, overconsolidated clays and soft rocks exhibit strain-hardening and strain-softening behaviour in a certain range of confining pressure. The aim of the present paper is to construct a constitutive model of soft rock that can describe not only the strain-hardening behaviour, but also the strain-softening behaviour. An elasto-plastic constitutive model for soft rock is derived by introducing a stress history tensor
  • 1 The preliminary idea was first reported in the reference, the conference paper16. This paper is a complete version of the theory with interpretations and experimental validations
  • . The model is evaluated through a comparison of the calculated results and the experimental results of tests on sedimentary soft rock (porous tuff). In addition, the applicability of the model to numerical analyses is discussed in relation to the uniqueness of the solution in initial and boundary value problems.  相似文献   

    8.
    9.
    适用于砂土循环加载分析的边界面塑性模型   总被引:1,自引:0,他引:1  
    董建勋  刘海笑  李洲 《岩土力学》2019,40(2):684-692
    基于临界状态土力学框架,建立了一个适用于砂土排水循环加载的边界面塑性模型。采用了考虑虚拟峰值应力比的偏应变硬化准则,初始加载阶段应力点位于边界面上,反向加载阶段以历史最大屈服面作为边界面,同时实现了对密砂软化现象的模拟和对历史所受最大应力的记忆。边界面采用修正的椭圆形,引入考虑密度与应力水平的状态相关剪胀函数,采用非相关联流动法则和以应力反向点作为映射中心的径向映射准则。模型仅有10个参数,通过常规三轴试验即可确定,并且使用一套参数可以模拟不同围压、密度的单调和循环加载情况。分别对饱和砂土的单调、循环排水三轴试验进行模拟,结果表明,该模型能够合理地反映饱和砂土排水条件下的应力-应变特性。  相似文献   

    10.
    11.
    Adding a small amount of non-plastic silt to clean sands may lead to dramatic loss of shear strength and a noteworthy tendency toward contraction when the mechanical behavior of the mixture is compared with that of the clean host sand. Thus, simulation of the behavior of silty sands with varying fines content is still a challenging subject in geomechanics. A unified constitutive model for clean and silty sands is presented in this paper. To eliminate the factitious decrease of void ratio associated with inactive silt particles in various silty sand mixtures, the concept of equivalent void ratio is used in the model formulation instead of the global void ratio. In addition, the instantaneous soil state is expressed in terms of intergranular state parameter taking into account the combined influence of intergranular void ratio, mean principal effective stress and fines content. Then, dilatancy and plastic hardening modulus are directly linked to the intergranular state parameter. To improve the model capacity in simulation of cyclic tests, new features are added to the plastic hardening modulus. It is shown that the proposed model can reasonably reproduce the mechanical behavior as well as the onset of flow liquefaction instability of clean and silty sands using a unique set of parameters.  相似文献   

    12.
    刘斯宏  沈超敏  毛航宇  孙屹 《岩土力学》2019,40(8):2891-2898
    堆石料的强度变形特性与初始孔隙及应力状态等因素相关。建立了能够预测不同初始孔隙与初始围压影响的堆石料弹塑性本构模型。在剑桥类本构模型框架内,模型能够反映随着孔隙与围压的增大,变形特性由剪胀趋于剪缩的规律。模型采用了基于颗粒体材料细观结构变化的屈服函数和非关联流动准则,提出了能够反映堆石料正常固结线不唯一的硬化参数。为了反映状态相关性,假定堆石料存在唯一的临界状态面,探讨了考虑状态相关性需要满足的数学条件,从而对剪胀方程与硬化参数进行了修正。提出了基于粒子群优化算法的模型参数快速确定方法,将某筑坝堆石料不同初始孔隙比与围压条件下模型预测结果与三轴试验结果对比,验证了模型的合理性。  相似文献   

    13.
    Heavy and extra heavy oil reservoirs are subjected to high temperatures during thermal recovery processes like SAGD and CSS. In-situ temperature state changes throughout these operations may generate variations in the mechanical properties or strength parameters of the rock such as Young and Bulk’s modulus, internal friction angle, cohesion and dilation angle. This paper presents results about the variation of the elastic modulus and mechanical properties, in both elastic and plastic region due to changes in temperature and effective confining stress for reconstituted samples of Colombian unconsolidated sands. In order to study these changes, several drained triaxial tests are performed in a range of temperature between 50 and 230 °C and a range of effective confining stress between 0.4 and 8.2 MPa, these tests are carried out on reconstituted samples of oil sands recovered in an outcrop in the Magdalena middle valley of Colombia. The experimental results are analyzed with an analytical model based on the constitutive model of Mohr–Coulomb. The analysis is divided in two ways: First, the elastic region is analyzed calculating the variation of the elastic modulus (Young and bulk’s modulus) and the mechanical parameters (cohesion and internal friction angle) with temperature and effective confining stress, these calculus are done in the linear zone of the stress–strain curve. Then, the plastic region is analyzed using Mohr–Coulomb constitutive model with a non-associative flow rule in order to represent in a better way the dilatant/contractive behavior of the material, from this analysis is possible to obtain the behavior of the mechanical properties during plastic strains. The stress–strain curves obtained from the triaxial compression tests show that for the highest and medium effective confining stress (8.2 and 4.0 MPa), there is a hardening strain behavior after the yielding point that implies a loose sand behavior under confining conditions. Meanwhile, for lowest effective confining stress (0.4 MPa) the samples show a softening strain, a typical behavior for dense sands under confining conditions.  相似文献   

    14.
    A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress–strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress–strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr–Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress–strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.  相似文献   

    15.
    Chang  Dan  Lai  Yuanming  Yu  Fan 《Acta Geotechnica》2019,14(6):1757-1783

    The mechanical property of frozen saline sandy soil is complicated due to its complex components and sensitivity to salt content and confining pressure. Thus, a series of triaxial compression tests were carried out on sandy samples with different Na2SO4 contents under different confining pressures to explore the effects of particle breakage, pressure melting, shear dilation and strain softening or hardening. The test results indicate that the stress–strain curves exhibit strain softening/hardening phenomena when the confining pressures are below or above 6 MPa, respectively. A shear dilation phenomenon was observed in the loading process. With increasing confining pressure, the strength firstly increases and then decreases. By taking into consideration the changes between the grain size distributions before and after triaxial compression tests, a failure strength line incorporating the influences of both particle breakage and pressure melting is proposed. In order to describe the deformation characteristics of frozen saline sandy soil, an elastoplastic incremental constitutive model is established based on the test results. The proposed model considers the plastic compressive, plastic shear and breakage mechanisms by adopting the non-associated flow rule. The breakage mechanism can be reflected by an index related to the initial, current and ultimate grain size distributions. The hardening parameters corresponding to compressive and shear mechanisms consider the influence of particle breakage. Then the effect of particle breakage on both the stress–strain and volumetric strain curves is analyzed. The calculated results fit well with the test results, indicating that the developed constitutive model can well describe the mechanical and deformation features of frozen saline sandy soil under various stress levels and stress paths. In addition, the strain softening/hardening, contraction, high dilation and particle breakage can be well captured.

      相似文献   

    16.
    SANICLAY is a new simple anisotropic clay plasticity model that builds on a modification of an earlier model with an associated flow rule, in order to include simulations of softening response under undrained compression following Ko consolidation. Non‐associativity is introduced by adopting a yield surface different than the plastic potential surface. Besides, the isotropic hardening of the yield surface both surfaces evolve according to a combined distortional and rotational hardening rule, simulating the evolving anisotropy. Although built on the general premises of critical state soil mechanics, the model induces a critical state line in the void ratio–mean effective stress space, which is a function of anisotropy. To ease interpretation, the model formulation is presented firstly in the triaxial stress space and subsequently, its multiaxial generalization is developed systematically, in a form appropriate for implementation in numerical codes. The SANICLAY is shown to provide successful simulation of both undrained and drained rate‐independent behaviour of normally consolidated sensitive clays, and to a satisfactory degree of accuracy of overconsolidated clays. The new model requires merely three constants more than those of the modified Cam clay model, all of which are easily calibrated from well‐established laboratory tests following a meticulously presented procedure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

    17.
    高温冻结粉土力学特性试验研究   总被引:1,自引:1,他引:0  
    为了探讨高温冻结粉土的力学特性,进行了一系列常规三轴压缩和三轴压缩加卸载试验。结果表明:(1)随着围压的增大,应力应变曲线先表现为应变软化,后应变硬化,最后又应变软化。(2)体积应变曲线均表现为先体缩后体胀,且围压越大,体胀越弱。(3)通过引入改进的双曲线模型,能较好地模拟应变软化和硬化特性。在q-p平面内建立了一个新的强度准则,并利用修正Mohr-Coulomb屈服准则,探讨了黏聚力c和内摩擦角φ的变化规律。根据试验结果,确定了不同围压及不同加卸载循环次数下高温冻结粉土的回弹模量及其损伤变化规律。最后,建立了塑性体积变形和塑性剪切变形之间的关系式和表达式,进一步探讨了高温冻结粉土的剪胀特性。  相似文献   

    18.
    为探讨水化状态对饱和压实膨胀土应力-应变-强度特征的影响,以压实度为95%的荆门弱膨胀土为研究对象,开展了2种典型水化状态下的固结与三轴试验,其中第1种水化状态采用常规饱和方法,第2种水化状态为试样自由膨胀至稳定状态。结果表明:(1)受变形约束条件与渗径的影响,不同水化状态下体膨胀率有较大差别;(2)第2种水化状态下的饱和压实膨胀土具有更大的硬化指数λ与膨胀指数κ、较小的弹性剪切模量,其有效内摩擦角为第1种水化状态下的77.2%,体现出膨胀土饱和强度的变动性;(3)2种水化状态下的固结曲线均呈现出明显的屈服现象,其屈服应力分别为123.2 kPa与94.5 kPa;(4)第1种水化状态下,低围压下试样应变软化与剪胀,高围压下应变强化与剪缩;第2种水化状态下试验围压范围内均发生剪缩和轻微的应变软化;(5)2种水化状态下试样在固结与剪切过程中均表现出超固结性,这种超固结性并非完全由先期固结压力所致,而是试样受荷过程中膨胀受到约束造成的;(6)不同水化饱和状态下初始孔隙比不同,膨胀势也不同,膨胀势与外部约束条件、排水条件、应力状态相互作用,造成其应力-应变-强度特征的差异性。  相似文献   

    19.
    谷建晓  杨钧岩  王勇  吕海波 《岩土力学》2019,40(12):4597-4606
    钙质砂是一种海洋生物成因的特殊岩土材料,具有颗粒性状不规则、易破碎的特点,表现出与石英砂不同的力学性质。为模拟钙质砂在不同应力水平下的应力?应变关系,首先分析南水模型的不足:即无法描述应力不变情况下应变无限增长的特点和不能描述钙质砂的剪胀性;然后通过在切线模量中引入应力比与峰值应力比的比值,合理考虑了颗粒破碎的影响;提出了切线模量和切线体积比与应力比间的函数关系式,使得改进后的模型能较好地描述应变?体变关系。同时,将孔隙压力系数引入到孔隙压力表达式中,较好地模拟了三轴不排水剪切试验结果。与现有的模型相比,改进后的模型表达式简单易懂,参数获取更为方便。  相似文献   

    20.
    In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号