首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
超大型"管幕-箱涵"顶进施工土体变形的分析与预测   总被引:1,自引:0,他引:1  
孙钧  虞兴福  孙旻  李向阳 《岩土力学》2006,27(7):1021-1027
结合上海市中环线北虹路下立交地道工程采用“管幕-箱涵”顶进的非开挖施工全过程,分别应用ANSYS和FLAC三维数值分析程序,对顶进施工所引起的地表变形位移进行了全过程的动态仿真模拟,并采用弹性地基梁法和室内模拟试验以及现场实测数据比拟法,对地表变形特征进行了系统地研究,最后应用软科学的智能方法,对“管幕-箱涵”顶进非开挖工法所引起的地表变形位移进行了人工神经网络滚动预测.其研究成果已经提交施工部门参考和采用.  相似文献   

2.
以长春市伊通河排水管网改造工程为例,通过现场实测中粗砂地层条件下采用泥水平衡顶管顶进过程中顶进力的变化情况,系统研究了影响顶进力的因素及其变化规律,并对顶进力的计算进行了理论分析,与实际顶进力进行了对比,最后运用Matlab软件对实测数据进行数值分析,得出在该地质条件下的泥水平衡顶管摩阻力和顶进力计算公式。  相似文献   

3.
考虑注浆压力的顶管施工引起土体变形计算方法   总被引:1,自引:0,他引:1  
顶管施工引起周围地层变形的计算预测是顶管施工中必须加以重视的问题。地层的沉降变形与顶管施工的几个环节有密切的联系,如:①顶管姿态与开挖面土压;②顶进与换管;③注浆过程等。理论分析应考虑这几个施工中的关键因素。针对上述施工影响因素,提出了考虑注浆压力的顶管施工的地层移动的计算方法。用Mindlin的位移解分析模拟开挖面土压、顶进与换管过程中的侧面摩擦力的变化引起的位移;以Sagaseta的土体损失引起的土体位移模式分析姿态控制、土体损失等引起的变形;将圆孔扩张的Verruijt解拓展到三维,用于计算注浆压力引起的位移与变形。结果表明,考虑注浆压力的变化,可以得到更为合理的预测结果。  相似文献   

4.
管幕工法在北虹路地道中的应用   总被引:3,自引:0,他引:3  
本文介绍了中环线北虹路地道管幕结合箱涵顶进工法的设计方案,分析了实施过程中出现的问题和相应的解决方案,总结了管幕结合箱涵顶进工法在软土地层中的应用经验。  相似文献   

5.
桩基施工将引起周边地层位移和邻近隧道结构变形,以南京龙津桥改建项目桩基工程为背景,通过现场实测,分析研究钻孔灌注桩施工全过程各工况条件对地层位移场和邻近既有隧道结构变形的影响规律。结果表明:由于钢套管的护壁作用,钻孔灌注桩施工过程中产生的最大地层位移和隧道结构变形较小,说明采用“钢套管边旋压边取土”、“群桩间跳施工”等工艺,对周围土体扰动影响程度较小,建议近隧桩基工程采用全套管灌注桩的施工方法,监测分析结果可为类似工程提供技术参考。  相似文献   

6.
系统地介绍了矩形箱涵拉顶式施工中,掘进机头轴线方向的倾侧纠偏、机头顶进间歇防回缩所需的拉力的计算方法,并通过工程实例印证。根据理论分析和相应的计算公式可以得出矩形箱涵采用"拉顶式"工艺施工时,在其接受井内配置的拉力较为精确的计算结果,并能满足实际工程的需要。  相似文献   

7.
悬臂排桩支护结构空间变形分析   总被引:9,自引:2,他引:7  
以矩形基坑悬臂排桩支护结构为研究对象,通过分析现场实测数据和数值计算,归纳出了冠梁和支护桩的空间变形模式,建立了整个支护系统的能量表达式。利用最小势能原理,推导了基坑中部桩顶最大位移的解析解,分析了各主要支护参数对该位移的影响。研究结果表明,桩顶最大位移随坡顶超载和桩间距的增大基本呈线性增大趋势;当嵌固深度系数逐渐增大时,桩顶最大位移也逐渐增大,但趋势渐缓;基坑长度对其影响也较大,当基坑长度超过一定数值后,最大位移值趋于稳定。最后利用所得的研究成果对某基坑进行了验证,并与现场实测结果进行了对比,计算结果能够满足工程要求。  相似文献   

8.
高琦  陈保国  吴森  袁山  孙梦尧 《岩土力学》2023,(7):2151-2160+2169
在高填方箱涵顶部铺设可发性聚苯乙烯(expandable polystyrene,简称EPS)板降低其荷载已经在工程中得以应用,而EPS板的蠕变会使箱涵受到的土压力随时间发生变化。现有的箱涵设计理论未能明确的反应EPS板的长期减载效果以及箱涵长期受力特性。开展了EPS板减载条件下箱涵短期受力特性模型试验,并利用模型试验结果验证数值模型。之后利用验证后的数值模拟方法分析涵-土体系应力重分布规律以及高填方箱涵长期受力特征;在此基础上提出涵-土体系力学模型,推得涵顶长期土压力计算方法,并与数值模拟结果进行对比验证。研究表明:涵顶土压力先随时间逐渐减小,然后会出现小幅增大,最终趋于稳定,对比填土完成时土压力减小了52.12%;涵侧竖向土压力和水平土压力总体上均随着时间逐渐增大并趋于稳定,涵侧上部范围内最终水平土压力比填土完毕时增长了28.32%;基底土压力也是先增大后趋于稳定。实际工程中侧墙的设计应考虑EPS板蠕变引起水平土压力的增加,避免箱涵侧墙在长期使用中产生受弯破坏。  相似文献   

9.
非开挖HDD地表变形数值模拟及DCRP识别技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
孙平贺  乌效鸣 《探矿工程》2010,37(10):61-64
采用非开挖水平定向钻进技术近地表施工时,由于地层及钻井液压力等原因易产生地表变形。结合美国梅萨市一处通信管道施工实例,对0-0.9 MPa钻井液压力作用下的地表变形程度进行了数值分析,得到地表最大隆起量为26 mm。采用DCRP技术及水准仪方法对该变形区域钻井液压力作用前后的地表进行位移检测,得到地表最大隆起量分别为28 mm和30 mm,表明数值模拟分析结果同现场检测结果比较吻合。同时,在现场所布置的26个检测点中,两种方法检测到的隆起量最大相差2.7 mm,表明其精度比较接近。此外,由于DCRP技术属于非接触式三维检测,受施工现场条件及人员操作限制少,故具有较为理想的应用前景。  相似文献   

10.
唐正  王洪新  孙德安  张骁 《岩土力学》2022,43(7):1933-1941
为研究管幕法群管顶进施工过程中地表位移变化规律,依托上海田林路下穿中环隧道工程,对地表位移实测数据进行了详细分析。通过数据处理发现,管幕施工期间变形发展可细分为7个阶段,其中包括4个推进阶段、3个暂停推进阶段。管幕推进阶段的地表位移由地层损失沉降和注浆引起的地表隆起叠加而成;暂停推进阶段的地表沉降主要是固结沉降。运用Peck公式对地表位移进行描述,通过现场数据反分析出各根钢管推进时的沉降槽宽度系数i和地层损失率η。基于分析结果,提出了适用于上海软黏土的iη 计算公式,其中i的公式只与钢管半径R、钢管埋深h和土体内摩擦角φ 有关,而η的公式表达成随时间的双曲线函数。注浆导致的地表隆起可分解成各根钢管顶进伴随注浆造成的负地层损失。运用上述方法对地表位移进行预测,并与实测结果对比,验证了文中方法的正确性,成果可对类似管幕法工程施工引起的地表位移预测提供科学参考。  相似文献   

11.
箱涵顶进工艺在玄武湖水底交通隧道方案中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
在玄武湖水底交通隧道筑堤开槽埋管方案中,为确保古城墙的安全,可采用箱涵顶进工艺穿越古城墙基础。介绍了箱涵顶进工艺的结构设计及实用前景。  相似文献   

12.
李淑海  张志勇  王中兵 《探矿工程》2010,37(7):66-69,73
结合上海轨道交通2号线东延伸段工程张江高科站工程实例,详细介绍了地下暗埋箱涵拉顶式施工新技术,该技术具有可在工作面积狭小的环境条件下施工、施工对环境影响较小、导向精度高等优点,其工艺是现代顶管施工技术的一种创新和补充,是非开挖地下箱涵施工的一种新的技术手段,为复杂环境下的地下空间开发利用提出了新的解决方案。  相似文献   

13.
本文用系统分析的思想,对玄武湖水底交通隧道两种工方案进行了比选,并对明挖法方案进行了优化,最后确定了最佳方案-箱涵顶进行筑堤开槽埋管方法。  相似文献   

14.
夏才初  阙程柯  刘胜 《岩土力学》2011,32(12):3555-3560
顶进箱涵全断面置换管幕工法是在出发井和接收井之间,利用顶管法在箱涵所在位置顶推钢管,置换出土体,形成全断面管撑,再顶推箱涵,同步置换出已顶进的钢管。针对该工法中的钢管幕,建立其内力和变形计算简化模型,将钢管视为在附加荷载作用下的置于Winkler地基上的弹性地基梁,推导出全断面管幕形式顶进箱涵置换管幕工法的钢管幕内力和变形计算公式,以此分析钢管幕的竖向变形。并采用弹性地基梁法和模拟试验比拟法,发现二者在规律及大小上都较为接近,说明所推导出的内力和变形计算公式具有一定的合理性,为实际工程的设计提供了理论依据  相似文献   

15.
The response of box culverts to static loads is controlled by soil arching. Soil arching is a result of a complex soil culvert interaction (SCI) due to the relative stiffness between the culvert and the surrounding soil, and is a critical consideration in culvert design. The factors that affect soil arching on box culverts include the soil height above the culvert, the geometrical configuration of the box culvert and the properties of the soil around it. Box culverts are typically designed using formulae that assume simplified behaviors and in some cases rely on considerable empiricism. In the present study, small scale centrifuge physical model tests were conducted to investigate SCI considering the height and density of soil above the culvert and the geometry of the culvert. The results of these centrifuge tests were used to calibrate and verify a numerical model that was used to further investigate the response of box culverts to static loads. The results have been evaluated for bending moment and soil culvert interaction factors. The results demonstrated that the soil culvert interaction factors are not only a function of the height of soil column above the culvert, but also a function of the culvert thickness, soil elastic modulus and Poisson’s ratio. Therefore, the results were used to establish charts and equations that can be employed to assess the design values of the static soil pressure and static bending moment for box culverts.  相似文献   

16.
顶力计算是顶管施工的重要内容,关系到整个工程的造价和成败。通过对顶力预测进行理论分析,针对混凝土顶管施工建立顶力计算模型,依次计算总顶力的两个组成部分:顶进正面阻力和管周摩擦阻力。采用朗金主动土压力理论计算水平土压力,砂性土采用“水土分算”方法而粘性土采用“水土合算”方法,进而计算顶进正面阻力;结合土柱压力理论和马斯顿压力理论,分别建立相应的管周土压力模型,给出管周总摩擦阻力的计算方法。得到适用条件明确、计算结果可靠的顶力计算公式,该公式的计算结果与工程实例相比较,满足工程要求。  相似文献   

17.
为保证顶管工程的施工安全和经济设计,必须深入分析顶力作用下工作井及周围土体的应力、位移特性。以两个实际顶管工程为工程背景,针对工作井的浅埋、深埋圆形沉井,采用三维有限元分析,给出了浅埋沉井土抗力沿圆周分布的拟合方程。分别采用《规程》[1]和《手册》[2]推荐的计算方法和三维有限元分析,对顶力作用下深埋、浅埋工作井的位移和新增土抗力进行对比分析,结果表明:①由于只考虑了顶力后背一侧半圆范围内土体抗力的作用,规范法和手册法将导致土抗力计算结果偏大;②顶力作用位置对深埋沉井的井壁变位、土抗力大小和分布情况影响显著;③规范法和手册法仅适用于顶力作用于沉井底部的浅埋沉井。  相似文献   

18.
大断面矩形顶管上跨既有地铁隧道施工过程中,由于近距离开挖出土卸荷,导致既有地铁隧道产生上浮变形,危及地铁运营安全。本文以北京市通州区畅和西路(兆善大街—潞阳大街)综合管廊矩形顶管工程为背景,采用FLAC3D有限差分软件建立了大断面矩形顶管上跨既有地铁隧道的三维数值模型,研究了双线矩形顶管上跨施工引起地铁隧道上浮的变形规律以及采用不同抗浮配重对既有地铁隧道的变形影响,并将模拟结果与现场监测数据进行对比,验证了数值模型的准确性。研究结果表明:双线顶管上跨施工引起地铁隧道的上浮变形大于单线顶管引起的上浮变形,且最大上浮变形均位于顶管隧道轴线处;施加与开挖损失土体近似重量的配重,可改变地铁隧道原有水平变形规律,导致先穿越的地铁隧道整体向始发井方向移动,后穿越的地铁隧道整体向接收井方向移动。随抗浮配重的增加,地铁隧道上浮位移减小,所受拉应力减小,且施加开挖损失土体重量50%的抗浮配重,可以将地铁上浮变形控制在1.4 mm以内;研究成果为该工程地铁隧道抗浮设计提供了参考依据。  相似文献   

19.
王开军 《地质与勘探》2024,60(1):121-131
矩形顶管施工过程中会对周围土体造成扰动,引起地表产生竖向变形。为研究超浅覆土顶管施工过程中的地表沉降规律,以深圳市某下穿道路矩形顶管工程为背景,使用PLAXIS 3D软件对顶管双线施工进行有限元模拟。首先将模拟结果与实测结果对比以验证模拟结果的合理性,然后分析双线施工地表沉降变化规律,最后对现场加固措施进行评价。主要结论如下:未加固时顶管顶进过程中,最大沉降量位于始发端,最大隆起量位于接收端;加固后地表沉降最大值点及沉降最大值均发生了改变:加固后地表最大沉降值点由始发井改变为顶管中部区域,最大沉降值减少了6.15 mm,表明现场加固方案效果显著;未加固和加固后地表沉降纵向曲线规律基本一致,表现为三个阶段:隆起期、快速沉降期和沉降稳定期;未加固和加固后地表横向沉降槽变化情况基本一致。  相似文献   

20.

In view of the construction technology and formation deformation of the existing rivers under the subway shield interval tunnel, relying on Zhengzhou rail transit line 17 shield tunnel through the south-north water transfer channel project, using the trial tunneling method of shield tunnel test section to optimize all kinds of construction parameters, and the formation analysis and calculation of the determined digging pressure, noting the final parameters that are determined by comparison between the extractive parameters such as pulp pressure, and they are used in MIDAS GTS/NX finite unit analysis software for numerical simulation analysis, combined with on-site testing, to study the variation of different depth formation subsidence values and horizontal displacement values when passing through the south-north water transfer canal under water conditions, and put forward the reinforcement scheme of shield tunneling through the general river bed and hole. The results show that the maximum subsidence of the trunk canal shield through the bottom is 11.3 mm, and the verification parameters are reasonable and feasible. The horizontal subsidence trough of the soil above the over-soil layer at the top of the main canal embankment is distributed by Gauss. The sinking distribution can be estimated using the Peck formula, the middle of the layer subsidence trough is distributed horizontally, and the soil subsidence trough below it is inverted hump-like distribution, with the peak point directly above the center line of the two tunnels, and the vertical zero horizontal displacement surface is located in the middle line position between the two tunnels, and the horizontal zero horizontal displacement surface is located. The horizontal displacement curve of the soil layer above the soil layer is inverted S-type, the maximum displacement appears at the anti-bending point of the surface sedimentation trough curve, the horizontal displacement curve of the soil layer on the horizontal zero horizontal displacement surface is zero, and the lower soil layer curve is double-inverted S-shaped. In the construction, we should pay attention to the monitoring of the vertical subsidence and horizontal displacement of the deep soil, adjust the shield parameters and reduce the horizontal and vertical shearing effect of the deep soil on the surrounding pipeline, inner pile base and other structures during the construction of the shield.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号