首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
The transient deformation of an elastic half‐space under a line‐concentrated impulsive vector shear load applied momentarily is disclosed in this paper. While in an earlier work, the author gave an analytical–numerical method for the solution to this transient boundary‐value problem, here, the resultant response of the half‐space is presented and interpreted. In particular, a probe is set up for the kinematics of the source signature and wave fronts, both explicitly revealed in the strained half‐space by the solution method. The source signature is the imprint of the spatiotemporal configuration of the excitation source in the resultant response. Fourteen wave fronts exist behind the precursor shear wave S: four concentric cylindrical, eight plane, and two relativistic cylindrical initiated at propagating centres that are located on the stationary boundaries of the solution domain. A snapshot of the stressed half‐space reveals that none of the 14 wave fronts fully extend laterally. Instead, each is enclosed within point bounds. These wave arresting points and the two propagating centres of the relativistic waves constitute the source signature. The obtained 14 wave fronts are further combined into 11 disparate wave fronts that are grouped into four categories: an axis of symmetry wave—so named here by reason of being a wave front that is contiguous to the axis of symmetry, three body waves, five surface waves and two inhibitor waves—so named here by reason that beyond them the material motion dies out. Of the three body waves, the first is an unloading shear wave, the second is a diffracted wave and the third is a reflected longitudinal two‐branch wave. Of the two inhibitor waves, the first is a two‐joint relativistic wave, while the second is a two‐branch wave. The wave system, however, is not the same for all the dependent variables; a wave front that appears in the behaviour of one dependent variable may not exist in the behaviour of another. It is evident from this work that Saint–Venant's principle for wave propagation problems cannot be formulated. Therefore, the above results are valid for the particular proposed model for the momentary line‐concentrated shear load. The formulation of the source signature, the wave system, and their role in the half‐space transient deformation are presented here. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
First, the response of an ideal elastic half‐space to a line‐concentrated impulsive normal load applied to its surface is obtained by a computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. Then, the geometry is determined of the obtained waves and the source signature—the latter is the imprint of the spatiotemporal configuration of the excitation source in the resultant response. Behind the dilatational precursor wave, there exists a pencil of three plane waves extending from the vertex at the impingement point of the precursor wave on the stress‐free surface of the half‐space to three points located on the other two boundaries of the solution domain. These four wave‐arresting points (end points) of the three plane waves constitute the source signature. One wave is an inhibitor front in the behaviour of the normal stress components and the particle velocity, while in the behaviour of the shear stress component, it is a surface‐axis wave. The second is a surface wave in the behaviour of the horizontal components of the dependent variables, while the third is an inhibitor wave in the behaviour of the shear stress component. An inhibitor wave is so named, since beyond it, the material motion is dying or becomes uniform. A surface‐axis wave is so named, since upon its arrival, like a surface wave, the dependent variable in question features an extreme value, but unlike a surface wave, it exists in the entire depth of the solution domain. It is evident from this work that Saint‐Venant's principle for wave propagation problems cannot be formulated; therefore, the above results are a consequence of the particular model proposed here for the line‐concentrated normal load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents transient deformation of an elastic half‐space under two types of line‐concentrated impulsive loads applied simultaneously. One load is a sustainable normal force, while the other is a momentarily applied vector shear force. For each of the two loads the author gave the respective solution in two separate papers. Here the two solutions are superimposed to determine the response of the half‐space under the combined loads. The present work is devoted to the salient wave propagation features seen in the resultant computer plots that disclose the strained half‐space. Since each critical deformation is explicitly indicated in the plots by a wave front, the interpretation of the response of the half‐space to the applied load is readily available at a glance. A comparison is then presented that identifies those deformation traits and wave fronts, among the nineteen here, that are more closely related to those found in previous works. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the numerical manifold method (NMM) is extended to study wave propagation across rock masses. First, improvements to the system equations, contact treatment, and boundary conditions of the NMM are performed, where new system equations are derived based on the Newmark assumption of the space–time relationship, the edge‐to‐edge contact treatment is further developed for the NMM to handle stress wave propagation across discontinuities, and the viscous non‐reflection boundary condition is derived based on the energy minimisation principle. After the modification, numerical comparisons between the original and improved NMM are presented. The results show that the original system equations result in artificial numerical damping, which can be overcome by the Newmark system equations. Meanwhile, the original contact scheme suffers some calculation problems when modelling stress wave propagation across a discontinuity, which can be solved by the proposed edge‐to‐edge contact scheme. Subsequently, the influence of the mesh size and time step on the improved NMM for stress wave propagation is studied. Finally, 2D wave propagation is modelled, and the model's results are in good agreement with the analytical solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half‐space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth‐order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed‐boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary‐layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half‐space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This work presents a numerical algorithm for solving crack scattering in a transversely isotropic medium whose symmetry axis is perpendicular to the crack surface. The crack is modelled as boundary discontinuities in the displacement u and the particle velocity v, of the stresses [κuv], where the brackets denote discontinuities across the interface. The specific stiffness κ introduces frequency-dependence and phase changes in the interface response and the specific viscosity ζ is related to the energy loss. The numerical method is based on a domain decomposition technique that assignes a different mesh to each side of the interface, that includes the crack plane. As stated above, the effects of the crack on wave propagation are modelled through the boundary conditions, that require a special boundary treatment based on characteristic variables. The algorithm solves the particle velocity–stress wave equations and two additional first-order differential equations (two-dimensional case) in the displacement discontinuity. For each mesh, the spatial derivatives normal to the interface are solved by the Chebyshev method, and the spatial derivatives parallel to the interface are computed with the Fourier method. They allow a highly accurate implementation of the boundary conditions and computation of the spatial derivatives, and an optimal discretization of the model space. Moreover, the algorithm allows general material variability. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
One‐dimensional consolidation analysis of layered soils conventionally entails solving a system of differential equations subject to the flow conditions at the bounding upper and lower surfaces, as well as the continuity conditions at the interface of every pair of contiguous layers. Formidable computational efforts are required to solve the ensuing transcendental equations expressing the matching conditions at the interfaces, using this method. In this paper, the jump discontinuities in the flow parameters upon crossing from one layer to the other have been systematically built into a single partial differential equation governing the space–time variation of the excess pore pressure in the entire composite medium, by the use of the Heaviside distribution. Despite the presence of the discontinuities in the coefficients of the differential equation, a closed‐form solution in the sense of an infinite generalized Fourier series is obtained, in addition to which is the development of a Green's function for the differential problem. The eigenfunctions of the composite medium are the coordinate functions of the series, obtained computationally through the application of the extended equations of Galerkin. The analysis has been illustrated by solving the consolidation problem of a four‐layer composite, and the results obtained agree very well with the results obtained by previous researchers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
基于Zienkiewicz提出的非饱和多孔介质波动理论,考虑两相流体和固体颗粒的压缩性以及惯性、黏滞和机械耦合作用,采用半解析的方法获得了一类典型边界条件下单层非饱和多孔介质一维瞬态响应解。首先推导出无量纲化后以位移表示的控制方程,并将其写成矩阵形式;然后,将边界条件齐次化,求解控制方程所对应的特征值问题,得到了满足齐次边界条件的特征值和相对应的特征函数。根据变异系数法并利用特征函数的正交性,得到了一系列仅黏滞耦合的关于时间的二阶常微分方程及相应的初始条件。在此基础上,运用精细时程积分法给出了常微分方程组的数值解。最后,通过若干算例验证了结果的正确性并探讨了单层非饱和多孔介质一维瞬态动力响应的特点。该方法可推广应用于其他典型的边界条件。  相似文献   

10.
This work addresses in‐plane pressure P and vertically polarized shear SV seismic wave propagation in a finite, laterally inhomogeneous, multilayered poroelastic geological region resting on the homogeneous elastic half‐space. The particular approach followed here is based on a combination of the (i) viscoelastic approximation (isomorphism) to Biot's equations of dynamic poroelasticity and on the (ii) boundary integral equation method (BIEM) using frequency‐dependent fundamental solutions of the governing wave equations. The problem is formulated under plane strain conditions and time‐harmonic motions are assumed. Validation of the viscoelastic isomorphism and verification of the BIEM is done by solution of benchmark examples. These simulation studies reveal that the proposed methodology is able to depict a sensitivity of the seismic signals recovered to the following parameters: (i) poroelastic properties of fluid saturated layers; (ii) lateral geological inhomogeneity; (iii) surface topography and (iv) frequency content and direction of the incident wave. It is concluded that the combination of viscoelastic isomorphism with BIEM software provides an effective numerical tool for evaluating site‐effect phenomena in multilayered, fluid saturated geological regions with complex geometry. The numerical results obtained demonstrate that dynamic poroelasticity interacting with other physical peculiarities of the Earth's surface layers, such as lateral heterogeneity, material properties along the wave path, local geological profile and type of elastic wave, gives rise to complex seismic signals on the free surface at the site of interest. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of the gravity and inertia of a concentrated mass attached to the top of a single pile on the pile’s dynamic response was investigated in this study. Based on Muki’s fictitious pile method, the static initial axial force of the pile caused by the gravity of the concentrated mass was calculated first. Using the obtained initial axial force of the pile and taking into account the influence of the inertia of the concentrated mass, the second kind of Fredholm integral equations describing the dynamic response of the preloaded single pile were established via the fictitious pile method. Using the obtained integral equations, the dynamic response of the preloaded single pile to an incident Rayleigh wave was calculated. The influence of the pile–soil Young’s modulus ratio, the frequency of the incident Rayleigh wave and the pile length on the dynamic response of the preloaded pile was examined. The numerical results of this study show that the concentrated mass attached to the top of the pile will affect both the dynamic axial and shear forces of the pile. Generally, the concentrated mass attached to the pile top has a greater influence on the shear force of the pile than on the axial force.  相似文献   

12.
饱和土表面在水平集中荷载作用下的瞬态反应   总被引:3,自引:0,他引:3  
分析了水平集中荷载作用在半空间饱和土表面时的瞬态问题。利用Laplace-Hankel变换对非轴对称Biot固结方程进行解耦,利用Laplace-Hankel数值逆变换得到半空间饱和土在时域内的数值解。退化到线弹性中的解与文献中的结果进行比较,验证了文中结果的正确性和数值逆变换的可靠性.可以用于研究地震工程中地震波的传播以及饱和土与结构之间相互作用等问题。  相似文献   

13.
埋置简谐扭转荷载作用下广义Gibson饱和地基动力响应   总被引:1,自引:0,他引:1  
吴大志  张振营 《岩土力学》2015,36(1):149-155
考虑地基为饱和半空间,研究了广义Gibson饱和地基内作用简谐扭转动荷载时地基的动力响应问题。从Biot饱和地基固结理论出发,结合扭转振动的特点,建立了剪切模量随深度线性变化的饱和地基扭转振动的动力微分方程,通过Hankel变换求解此微分方程,给出了Hankel变换域内的切向位移和剪应力关于待定系数的表达式。根据饱和地基表面为自由表面,荷载作用面位移连续、剪应力差等于动荷载大小,波的辐射条件等边界条件求解出待定系数,借助Hankel逆变换给出地基内的位移和应力的表达式。通过数值算例研究发现:在同一水平面内,地基内的切向位移和剪应力曲线的实部和虚部都呈现出非常明显的波动变化规律;在竖向平面内,动荷载作用面上部区域内随深度逐渐增大时,地基内切向位移和剪应力曲线的实部逐渐增大,而在动荷载作用面下部区域则正好相反;扭转动荷载的影响范围主要是荷载作用面上下2倍半径区域。  相似文献   

14.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A semianalytical procedure is proposed for evaluating the internal forces of circular tunnel with imperfect interface bonding in layered ground subjected to an obliquely incident plane P or SV wave. In this study, the hoop bending moment and hoop axial force are related to the free‐field responses of the ground. A one‐dimensional numerical approach is firstly presented to obtain the free‐field responses of a layered half‐space with an obliquely incident plane P or SV wave propagation. Then, the free‐field stress state is transformed and decomposed in the polar coordinate system. The internal forces of tunnel caused by the isotropic stress state and the pure shear state are calculated and then summed up to obtain the overall analytical solutions. Finally, the validity of the proposed semianalytical procedure is demonstrated by numerical examples.  相似文献   

16.
In this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
基于弹性理论,按照半空间体在边界上受法向集中力作用,对预应力锚索锚固段剪应力沿长度方向的分布规律进行模型研究。通过分析实际工程和现场试验中剪应力分布特征,引入与预应力、锚固段长度、岩体强度、胶结材料强度等相关的参数?和与剪应力最大值的位置、锚固段直径等相关的参数?后,可以较好地模拟锚固段的剪应力分布规律。根据锚固段胶结材料的抗压强度?c、内摩擦角?以及参数?与预应力大致成线性反比例关系,可以估算极限承载力。同时,按所述方法计算实际需要的锚固段长度Ls是设计锚固段长度Ld的2tan?倍。最后,实例分析表明,研究成果是合理的。  相似文献   

18.
范留明 《岩土力学》2013,34(9):2715-2720
平面波的传播问题通常可以归结为一维波动方程的定解问题。在非均匀介质中,即使简单的一维波动方程也需要借助于数值方法获得近似解。3层5点古典差分格式是计算偏微分方程一种常用算法,作为一种显式迭代格式,需要满足稳定性条件 ,其中 为波速, 为空间采样间隔, 为时间采样间隔。当 时, ,古典差分格式达到临界稳定状态。在这种情况下,平面波在 时间内的传播距离恰好等于空间采样间隔,差分格式真实地反映了平面波的传播原理,因而可以得到一维波动方程的精确解。但是,由于在非均匀介质中存在不连续的波阻抗界面,此方法不适于计算非均匀介质的波场。为了将临界稳定情况下的古典差分格式推广应用至非均匀层状介质,提出了一种能够处理波阻抗界面的有限差分格式,并应用傅里叶分析法得到其稳定性条件。模型算例验证了此算法的正确性。  相似文献   

19.
By using a complete set of poroelastodynamic spherical wave potentials (SWPs) representing a fast compressional wave PI, a slow compressional wave PII, and a shear wave S with 3 vectorial potentials (not all are independent), a solution scheme based on the method of fundamental solution (MFS) is devised to solve 3‐D wave scattering and dynamic stress concentration problems due to inhomogeneous inclusions and cavities embedded in an infinite poroelastic domain. The method is verified by comparing the result with the elastic analytical solution, which is a degenerated case, as well as with poroelastic solution obtained using other numerical methods. The accuracy and stability of the SWP‐MFS are also demonstrated. The displacement, hoop stress, and fluid pore pressure around spherical cavity and poroelastic inclusion with permeable and impermeable boundary are investigated for incident plane PI and SV waves. The scattering characteristics are examined for a range of material properties, such as porosity and shear modulus contrast, over a range of frequency. Compared with other boundary‐based numerical strategy, such as the boundary element method and the indirect boundary integral equation method, the current SWP‐MFS is a meshless method that does not need elements to approximate the geometry and is free from the treatment of singularities. The SWP‐MFS is a highly accurate and efficient solution methodology for wave scattering problems of arbitrary geometry, particularly when a part of the domain extends to infinity.  相似文献   

20.
Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号