首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In order to study mechanisms of hailstone formation and hail suppression with seeding and toobtain optimum seeding technique for hail cloud,a 3-D compressive numerical seeding model forhail cloud is developed.The water substance in hail cloud is divided into 8 categories,i.e.,watervapor,cloud droplet,raindrop,ice crystal,snow.graupel,frozen drop and hail,and the detailedmicrophysical processes are described in a spectrum with two variable parameters and morereasonable particle number/size distributions.Then,the model is able to predict concentration andwater content of various particles.Especially.it can calculate the number of hailstones whosecores are graupel or frozen drop and apply to study mechanism of hailstone formation.Additionally,a conservative equation of AgI as seeding or glacigenous agent is found andnucleation by condensation of artificial nucleus,and nucleation by freezing of cloud droplet or raindrop which contact with AgI particle are considered.The dynamic energy flux of hail shooting onground is used to verify seeding effect.Therefore the model is also used to study mechanism of hailsuppression with seeding and the seeding technique,  相似文献   

2.
At present,parameterization methods to describe cloud and precipitation processes are widely used in cloud and mesoscale models,but with different drop size distributions.When precipitation formation mechanism,weather modification technique,and mechanism of hail suppression with seeding are studied by using these models,a question that needs to be addressed is:what is the influence of different drop size distributions and related parameters on cloud and precipitation?In this paper,by using a three-dimensional hail cloud numerical model developed by the Institutes of Atmospheric Physics,Chinese Academy of Sciences, we performed numerical experiments with varied drop size distribution parameters for two hail storms,and analyzed the influence of shape parameters(ar,ai,and ag)of raindrops,ice crystal,and graupel size distributions on rainfall,hail amount,and microphysical processes in clouds.The results show that the variation of ar has no effect on precipitation formation on the whole,but affects directly the production rates for the physical processes related to raindrop.The ag variation has a less obvious effect on rainfall amount,but has a significant effect on hail amount,hailfall rate,and rainfall intensity.It impacts noticeably on the generation rate of the number and mass of ice crystal,graupel,and hail,and also to various degrees on all the microphysical processes in clouds.The ag variation also influences the growing process of the hydrometeors.The effects of the ai variation on part of the generation and growing processes of all the hydrometeors are significant,and even dramatic,such as the collection process of cloud water to rain through melting ice crystal(T CLcir).However,for clouds located in different geographic regions,the variation of ai has different effects on precipitation,which reflects the complexity of the impact of drop size distribution on cloud and precipitation.At last,some issues about the application of cloud models are also discussed.  相似文献   

3.
The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) has been used to investigate the extra-area effects of silver iodide (AgI) seeding on stratiform clouds performed at the supercooled layer.A bulk two-moment microphysical scheme and the new software package for silver iodide are incorporated in MM5.Extra conservation equations are applied to trace the seeding agent,which is transported along the flow field and interacts with the supercooled cloud fields.In this study,the model was run using three nested grids,with 3.3 km × 3.3 km horizontal resolution in the finest grid.The model results showed that seeding with AgI at the 5 to 15℃ levels had microphysical effects on the simulated clouds and that the simulation produced a longer-lasting seeding effect because of the transport of the seeding agent by upper-level winds.Most of the AgI particles acted as deposition nuclei,and the deposition nucleation process contributed mostly to additional cloud ice formation in this study.The results showed that more precipitation results from seeded than unseeded case,and the precipitation was redistributed downwind of the target.Augmented precipitation (varying from 5% to 25% downwind) was confined in space to within 250 km of the seeding target and in time to the 3-h period after initial seeding.  相似文献   

4.
A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 kin, 8.3 and 11 kin, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time,are simulated. The model results at the satellite receiving time axe compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material are similar to that of the cloud track.The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, width, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L^-1 are simulated in order to understand the variations of influencing range.  相似文献   

5.
The effects of the initial cloud condensation nuclei(CCN) concentrations(100–3000 mg~(-1)) on hail properties were investigated in an idealized non-severe hail storm experiment using the Weather Research and Forecasting(WRF) model, with the National Severe Storms Laboratory 2-moment microphysics scheme. The initial CCN concentration(CCNC) had obvious non-monotonic effects on the mixing ratio, number concentrations, and radius of hail, both in clouds and at the surface, with a CCNC threshold between 300 and 500 mg~(-1). An increasing CCNC is conducive(suppressive) to the amount of surface hail precipitation below(above) the CCNC threshold. The non-monotonic effects were due to both the thermodynamics and microphysics. Below the CCNC threshold, the mixing ratios of cloud droplets and ice crystals increased dramatically with the increasing CCNC, resulting in more latent heat released from condensation and frozen between 4 and 8 km and intensified updraft volume. The extent of the riming process, which is the primary process for hail production, increased dramatically. Above the CCNC threshold, the mixing ratio of cloud droplets and ice crystals increased continuously, but the maximum updraft volume was weakened because of reduced frozen latent heating at low level. The smaller ice crystals reduced the formation of hail and smaller clouds, with decreased rain water reducing riming efficiency so that graupel and hail also decreased with increasing CCNC, which is unfavorable for hail growth.  相似文献   

6.
The basic structure and cloud features of Typhoon Nida (2016) are simulated using a new microphysics scheme (Liuma) within the Weather Research and Forecasting (WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly- used microphysics scheme (WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme, it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.  相似文献   

7.
In this research,a novel dual-model system,one-dimensional stratiform cold cloud model(1DSC) coupled to Weather Research and Forecast(WRF) model(WRF-1DSC for short),was employed to investigate the effects of cloud seeding by silver iodide(AgI) on rain enhancement.Driven by changing environmental conditions extracted from the WRF model,WRF-1DSC could be used to assess the cloud seeding effects quantitatively.The employment of WRF-1DSC,in place of a one-dimensional two-moment cloud seeding model applied to a three-dimensional mesoscale cloud-resolving model,was found to result in massive reduction of computational resources.Numerical experiments with WRF-1DSC were conducted for a real stratiform precipitation event observed on 4-5 July 2004,in Northeast China.A good agreement between the observed and modeled cloud system ensured the ability of WRF-1DSC to simulate the observed precipitation process efficiently.Sensitivity tests were performed with different seeding times,locations,and amounts.Experimental results showed that the optimum seeding effect(defined as the percentage of rain enhancement or rain enhancement rate) could be achieved through proper seeding at locations of maximum cloud water content when the updraft was strong.The optimum seeding effect was found to increase by 5.61% when the cloud was seeded at 5.5 km above ground level around 2300 UTC 4 July 2004,with the maximum AgI mixing ratio(X s) equaling 15 ng kg 1.On the other hand,for an overseeded cloud,a significant reduction occurred in the accumulated precipitation(-12.42%) as X s reached 100 ng kg 1.This study demonstrates the potential of WRF1DSC in determining the optimal AgI seeding strategy in practical operations of precipitation enhancement.  相似文献   

8.
In order to improve our understanding of microphysical properties of clouds and precipitation over the Tibetan Plateau (TP), six cloud and precipitation processes with different intensities during the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ) from 3 July to 25 July 2014 in Naqu region of the TP are investigated by using the high-resolution mesoscale Weather Research and Forecasting (WRF) model. The results show unique properties of summertime clouds and precipitation processes over the TP. The initiation process of clouds is closely associated with strong solar radiative heating in the daytime, and summertime clouds and precipitation show an obvious diurnal variation. Generally, convective clouds would transform into stratiform clouds with an obvious bright band and often produce strong rainfall in midnight. The maximum cloud top can reach more than 15 km above sea level and the velocity of updraft ranges from 10 to 40 m s-1. The simulations show high amount of supercooled water content primarily located between 0 and -20℃ layer in all the six cases. Ice crystals mainly form above the level of -20℃ and even appear above the level of -40℃ within strong convective clouds. Rainwater mostly appears below the melting layer, indicating that its formation mainly depends on the melting process of precipitable ice particles. Snow and graupel particles have the characteristics of high content and deep vertical distribution, showing that the ice phase process is very active in the development of clouds and precipitation. The conversion and formation of hydrometeors and precipitation over the plateau exhibit obvious characteristics. Surface precipitation is mainly formed by the melting of graupel particles. Although the warm cloud microphysical process has less direct contribution to the formation of surface precipitation, it is important for the formation of supercooled raindrops, which are essential for the formation of graupel embryos through heterogeneous freezing process. The growth of graupel particles mainly relies on the riming process with supercooled cloud water and aggregation of snow particles.  相似文献   

9.
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.  相似文献   

10.
Recent Progress in Cloud Physics Research in China   总被引:5,自引:0,他引:5  
A review of China cloud physics research during 2003-2006 is made in this paper. The studies on cloud field experiments and observation, cloud physics and precipitation, including its theoretical applications in hail suppression and artificial rain enhancement, cloud physics and lightning, and clouds and climate change are included. Due primarily to the demand from weather modification activities, the issue of cloud physics and weather modification has been addressed in China with many field experiments and model studies. While cloud physics and weather modification is still an important research field, the interaction between aerosol, cloud and radiation processes, which is the key issue of current climate change research, has become a new research direction in China over the past four years.  相似文献   

11.
Five hailstones from two severe storms which occurred in the Qinghai area on 23 July and 6 August,1983 have been examined on their deuterium content and crystal structures,and an absolute temperaturescale against deuterium values is discussed.The deuterium concentration on 23 July had values rangingfrom—65.8 to—76.6‰ and on 6 August from—6.1 to—58.6‰,which correspond to the ambient tempera-tures of forming hailstones in the range—18—-23℃ (altitude 7.7—8.6km) and -1.3-27℃ (5.4-9.0 km),respectively.The hailstone embryos are of a type of conical graupel.The analysis of deuteriumvalues indicates that the graupel embryos were formed in the temperature ranges-16.8—-19.5℃(on 23July) and -11.8—-20℃ (on 6 August).It is found that hailstones grew at the middle or upper part ofthe cloud:some grew in the updraft on 23 July and some grew in an up and down motion on 6 August.In this paper,the updraft is calculated by two methods and the trajectory of hailstones is also discussed.  相似文献   

12.
A hail process in Huaihe River Basin observed by CINRAD Doppler radar on 12May 2000 hasbeen simulated by using nonhydrostatic mesoscale numerical model MM5.The simulated wind fieldis analyzed and compared with Doppler radar wind data,both of them show that there was ameso-β cyclone around the hail region.Results show that this meso-β cyclone existed below 3 kmin the troposphere and its cyclonic circulation was very obvious below 1 km.The temperature andmoisture fields from the simulation are also analyzed.Furthermore,the storm-relativeenvironmental helicity and CAPE(convective available potential energy)are discussed.  相似文献   

13.
梅雨锋暴雨中云物理过程的观测和数值模拟   总被引:7,自引:0,他引:7  
Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observedusing the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghaiduring June and July 1999. The vertical distributions of various cloud particle size, number density, andmass density are retrieved from the observations. Analyses of observations show that ice-phase particles(ice crystals, graupel, snowflakes, and frozen drops) often exist in the cloud of torrential rain associatedwith the Meiyu front. Among the various particles, ice crystals and graupel are the most numerous, butgraupel and snow have the highest mass density. Ice-phase particles coexist with liquid water dropletsnear the 0℃ level. The graupel is similarly distributed with height as the ice crystals. Raindrops belowthe 0℃ level are mainly from melted grauple, snowflakes and frozen drops. They may further grow largerby coalescence with smaller ones as they fall from the cloud base. Numerical simulations using the non-hydrostatic meso-scale model MM5 with the Reisner graupel explicit moisture scheme confirm the mainobservational results. Rain water at the lower level is mainly generated from the melting of snow andgraupel falling from the upper level where snow and graupel are generated and grown from collection withcloud and rain water. Thus the mixed-phase cloud process, in which ice phase coexists and interacts withliquid phase (cloud and rain drops), plays the most important role in the formation and development ofheavy convective rainfall in the Meiyu frontal system.  相似文献   

14.
Cloud distribution characteristics over the Tibetan Plateau in the summer monsoon period simulated by the Australian Community Climate and Earth System Simulator(ACCESS) model are evaluated using COSP [the CFMIP(Cloud Feedback Model Intercomparison Project) Observation Simulator Package]. The results show that the ACCESS model simulates less cumulus cloud at atmospheric middle levels when compared with observations from CALIPSO and CloudSat, but more ice cloud at high levels and drizzle drops at low levels. The model also has seasonal biases after the onset of the summer monsoon in May. While observations show that the prevalent high cloud at 9–10 km in spring shifts downward to 7–9 km,the modeled maximum cloud fractions move upward to 12–15 km. The reason for this model deficiency is investigated by comparing model dynamical and thermodynamical fields with those of ERA-Interim. It is found that the lifting effect of the Tibetan Plateau in the ACCESS model is stronger than in ERA-Interim, which means that the vertical velocity in the ACCESS model is stronger and more water vapor is transported to the upper levels of the atmosphere, resulting in more high-level ice clouds and less middle-level cumulus cloud over the Tibetan Plateau. The modeled radiation fields and precipitation are also evaluated against the relevant satellite observations.  相似文献   

15.
Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage.  相似文献   

16.
The cloud processes of a simulated moderate snowfall event in North China   总被引:1,自引:0,他引:1  
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20–21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.  相似文献   

17.
A thunderstorm that produced severe wind, heavy rain and hail on 23 August 2001 in Beijing was studied by a three-dimensional cloud model including hail-bin microphysics. This model can provide important information for hail size at the surface, which is not available in hail parameterization cloud models. The results shows that the cloud model, using hail-bin microphysics, could reasonably reflect the storm's characteristics such as life cycle, rainfall distribution and the diameter of the hailstones and also can reproduce developing processes of downbursts, where they can then be compared with the observed features of the storm. The downburst formation mechanism was investigated based on the cloud microphysics of the simulated storm and it was found that the downburst was primarily produced by hail-loading and enhanced by cooling processes that were due to hail melting and rain evaporation. The loading and melting of hail played crucial roles in the formation of downbursts within the storm.  相似文献   

18.
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and development are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.  相似文献   

19.
Based on a successful simulation of Typhoon Haikui (2012) using WRF (Weather Research & Forecasting) model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui’s landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui’s secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances (vapor, cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds (cloud water and ice) and precipitation (snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout, which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui’s rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.  相似文献   

20.
A 72-h cloud-resolving numerical simulation of Typhoon Hato(2017)is performed by using the Weather Research and Forecasting(WRF)model with the Advanced Research WRF(ARW)core(V3.8.1)on a horizontal resolution of2 km.To enhance the background tropical cyclone structure and intensity,a vortex dynamic initialization scheme with a terrain-filtering algorithm is utilized.The model reproduces reasonably well the track,structure,and intensity change of Typhoon Hato.More specifically,the change trend of simulated maximum wind speed is consistent with that of best-track analysis,and the simulated maximum wind of 49 ms^-1 is close to that(52 ms^-1)of the best-track analysis,indicating that the model has successfully captured the rapid intensification(RI)of Typhoon Hato(2017).Analyses of the model outputs reveal that the total microphysical latent heating of the inner-core region associated with enhanced vertical upward motion reaches its maximum at 9-km height in the upper troposphere during the RI stage.The dominant microphysical processes with positive latent heat contributions(i.e.,heating effect)are water vapor condensation into cloud water(67.6%),depositional growth of ice(12.9%),and generation(nucleation)of ice from vapor(7.9%).Those with negative latent heat contributions(cooling effect)are evaporation of rain(47.6%),melting of snow(27.7%),and melting of graupel(9.8%).Sensitivity experiments further show that the intensification speed and peak intensity of this typhoon are highly correlated to the dominant heating effect.A significant increase in graupel over 5-10-km height and snow at 10-14-km height in the inner-core region of Typhoon Hato corresponds well with its RI stage,and the latent heating from nucleation and depositional growth is crucial to the RI of simulated Hato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号