首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
第24届国际天文学联合会大会简况   总被引:3,自引:0,他引:3  
2000年8月7-18日在英国曼彻斯特如开了第24届国际天这联合会(IAU)大会,会议期间同时召开了5个学术讨论会,14个联合组讨论会,一个发展中国家天文学的专门讲座会和34个专业委员会及其所属工作组的工作会义,还在第29和第45专业委员会之间的联组会议以及三个大会邀请的科普讲座。简要介绍了会议概况,有关天体测量的联组讨论会JD2,JD6,JD12,JD13以及天体物理领域中的学术讨论会S201,S202,JD10等的讨论情况,并扼要介绍了这次大会通过的决议。  相似文献   

2.
新参考系的引入对天体测量学的影响   总被引:5,自引:0,他引:5  
由于观测、参考架、模型、时间尺度精度的不断提高和完善,国际天球参考系(ICRS)被引入使用,IAU2000年大会决定从2003年起采用新的天球中介极(CIP)、新的天球中介原点(CIO)、新的岁差一章动模型和新的UTI定义等,并定义了新的中介的运动参考架,由此给天体测量学带来很大的影响,天体测量学的内容和实践发生了许多重要的变化。据此,对天体测量学的术语、概念和定义的变化作了描述,并讨论了变化的原因和对天体测量学的影响。新的一套天体测量理论和方法正在变更之中,我们应及时跟上这个领域的发展步伐。  相似文献   

3.
国际天文联合会(IAU)在1991年和2000年分别通过了关于相对论天文参考系的重要决议。特别是2000年的决议,以两个互相等价的相对论N体多参考系理论:Brumberg-Kopeikin体系和Damour-Soffel-Xu体系为基础,构造了严格且自洽的一阶后牛顿(1PN)的局部参考系和全局参考系,并给出了相应的坐标变换规则。IAU2000决议发表后的10多年里,已经开始应用在一些高精度的天体测量数据处理模型中,但是其工程化应用还没有得到广泛实现,特别是目前为止我国没有将其应用到具体的天文观测或者空间探测计划中。因此有必要对IAU的相对论天文参考系理论做一个系统的解读。首先介绍了IAU在1991年给出的一个简单的相对论参考系决议;随后在第3章和第4章详细讨论了Brumberg-Kopeikin理论和Damour-Soffel-Xu体系;接着,详细给出了IAU2000年大会关于相对论参考系的决议内容;最后,讨论了IAU2000决议的工程化应用、近10多年来的理论发展以及对未来的展望。  相似文献   

4.
介绍了云南天文台天体测量工作的发展过程,论述了在空间时代地面光学基本天体测量的必要性和应具备的条件,并且叙述了在新的要求和条件下,地面光学基本天体测量工作应该发挥的作用和广阔的发展前景。  相似文献   

5.
介绍了云南天文台天体测量工作的发展过程,论述在空间时代地面光学基本天钵测量必要性和应具备的条件,并且叙述了在新的要求和条件下,地面光学基本天体测量工作应该发挥的作用和广阔的发展前景。  相似文献   

6.
CCD探测器在地面天体测量中的应用   总被引:2,自引:0,他引:2  
CCD技术在天体测量领域的应用已得到很大发展,本文回顾了10年来CCD技术应用于大型望远镜和子千环上的基本情况和所取的成果,分析了这些应用中所存在的三个主要问题,并对这些问题提出了相应的解决途径,这些问题的解决,将能促进地面基本天体测量的精度和效率跨上一个新台阶。  相似文献   

7.
国际天文联合会(IAU)在2000年的决议上以两个互相等价的相对论N体多参考系理论——Brumberg-Kopeikin体系和Damour-Soffel-Xu体系为基础,构造了严格且自洽的一阶后牛顿(1PN)的局部参考系和全局参考系,并给出了相应的坐标变换规则。回顾了IAU2000决议关于参考系理论的核心内容,并指出该参考系理论的主要优点和理论不足。结合决议发表前后国际上对相对论参考系理论的一系列扩展研究,详细总结了在二阶后牛顿推广、参数后牛顿化以及太阳系非孤立引力系统等方面对参考系理论的研究进展,并讨论了未来的理论研究发展以及对实际天体测量的影响。  相似文献   

8.
空间时代地面光学天体测量的意义   总被引:1,自引:1,他引:0  
从基本天体测量的主要任务出发,介绍了绝对测定和相对测量之间的区别和不同用途,并针对河外射电源参考架和依巴谷参考架的高精度的不足之处,说明了地面光学天体测量的长期性和灵活性等优势正是克服这些不足之处所必须的,但这不应是传统的已有精度下的地面光学天体测量,而应是与空间测量精度可比的要求下的地面测量,两者配合起来,将能促进本学科和相关学科的发展。  相似文献   

9.
朱紫 《天文学进展》1997,15(1):21-26
讨论有关天体测量中的测光问题,介绍一些地面天体测量仪器和空间天体测量望远镜的测光研究。给出一种测光资料的处理方法,并建议利用DCMT开展天文光课题研究。  相似文献   

10.
近10年我国天体测量的发展   总被引:3,自引:0,他引:3  
简述天体测量学研究的内各以及与各相关学科之间的关系;描述近10年来国际天体测量研究的进展和前沿课题;叙述我国天体测量研究的历史背景和研究基础,以及近10年来在国家自然科学基金委员会和其他科学组织支持下取得的成果,并对今后10~20年我国天体测量的发展提出初步看法。  相似文献   

11.
简要地回顾和介绍了IAU时间尺度和参考系的历史和进展,其主要内容:(1)牛顿时空观和相对论时空观,(2)IAU各种时间尺度的历史演变和相互关系;(3)IAU的天文参考系,有关的最新决议,相对论框架下度规及其规范问题,四维时空中的空间1PN坐标变换,也介绍了一些有关工作,阐明了与IAU最新决议稍有不同的观点,指出目前IAU有关决议可能仍存在的某种程度上的不完善。  相似文献   

12.
13.
Complex velocity structure is revealed in several absorption systems in the spectrum of 0215+015 (z=1.715) at resolutions of 20–30 km s–1 FWHM. Striking differences are found in the relative strengths of low to high ions among the components, reinforcing our interpretation of these systems as intervening galaxies.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

14.
This article applies a new scheme of the first post-Newtonian theory (Damour et al., 1991–1994) to the problem of gauge in relativistic reference systems. Choosing and fixing gauge are necessary when the precision of time measurement and application needs to reach the 2PN level (10−16 or better). We present a general method for fixing the gauges of both the global and local coordinate systems, and for determining the expressions of gravitational potentials and coordinate transformations. The results relevant are consistent with the newest IAU resolutions, therefore they can be applied to astronomical practice.  相似文献   

15.
In 1970 the IAU defined any object'snorth pole to be that axis of rotation which lies north of the solar system's invariable plane. A competing definition in widespread use at some institutions followed the right hand rule whereby the north axis of rotation was generally said to be that that of the rotational angular momentum. In the case of the latter definition, the planet Neptune and its satellite Triton would have their north poles in opposite hemispheres because Triton's angular momentum vector is in the hemisphere opposite from that of Neptune's rotation angular momentum.The IAU resolutions have been somewhat controversial in some quarters ever since their adoption. A Working Group has periodically updated the recommended values of planet and satellite poles and rotation rates in accordance with the IAU definition of north and the IAU definition of prime meridian. Neither system is completely satisfactory in the perception of all scientists, and some confusion has been generated by publishing data in the two different systems.In this paper we review the IAU definitions ofnorth and of the location ofprime meridian and we present the algorithm which has been employed in determining the rotational parameters of the natural satellites. The IAU definition of the prime meridian contains some ambiguities which in practice have been specified by the numerical values published by the IAU working group but which have not yet been explicitly documented. The purpose of this paper is to explicitly document the algorithm employed by the IAU working group in specifying satellite poles and rotation rates.  相似文献   

16.
回顾了1900年以来LAU采用天文常数系统的简况,以及一些天文常数之间的数学关系,并描述了以前每次改变天文常数系统的主要因为.介绍了1991年以来IAU在天文常数方面的工作:包括IAU天文常数工作组和天文常数最佳估计值的情况.叙述了IAU 2009年天文常数系统替代IAU 1976天文常数系统的因为:随着人类对太阳系的探测,获得新的天文常数测定值;1991年以来在相对论框架下BCRS和GCRS的使用;P03岁差模型和MHB2000章动模型的采用.比较了IAU2009和1976天文常数系统的差异.最后介绍中国在天文常数方面工作的情况和今后工作的建议.  相似文献   

17.
In 1979 the Seventeenth General Assembly of the International Astronomical Union (IAU) in Montreal, Canada, adopted the 1979 IAU Theory of Nutation upon the recommendation of this Working Group. Subsequently the International Union of Geodesy and Geophysics (IUGG) passed a resolution requesting that this action be reconsidered in favor of a theory based on a different Earth model. As a consequence of that reconsideration the 1980 IAU Theory of Nutation was adopted. The details of that theory and the history of its adoption are described here in the Final Report of the IAU Working Group on Nutation. A summary of these events and the essence of our recommendations is provided first while the body of the report discusses these matters in greater detail. The theory itself is contained in Table I.  相似文献   

18.
Contemporary pulsar-timing experiments have reached a sensitivity level where systematic errors introduced by existing analysis procedures are limiting the achievable science. We have developed tempo2 , a new pulsar-timing package that contains propagation and other relevant effects implemented at the 1-ns level of precision (a factor of ∼100 more precise than previously obtainable). In contrast with earlier timing packages, tempo2 is compliant with the general relativistic framework of the IAU 1991 and 2000 resolutions and hence uses the International Celestial Reference System, Barycentric Coordinate Time and up-to-date precession, nutation and polar motion models. tempo2 provides a generic and extensible set of tools to aid in the analysis and visualization of pulsar-timing data. We provide an overview of the timing model, its accuracy and differences relative to earlier work. We also present a new scheme for predictive use of the timing model that removes existing processing artefacts by properly modelling the frequency dependence of pulse phase.  相似文献   

19.
Precise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of ±0.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号