首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chong Xu  Xiwei Xu 《Natural Hazards》2014,72(2):871-893
The April 14, 2010 Yushu, China, earthquake (Mw 6.9) triggered a great number of landslides. At least 2,036 co-seismic landslides, with a total coverage area of 1.194 km2, were delineated by visual interpretation of aerial photographs and satellite images taken following the earthquake, and verified by field inspection. Based on the mapping results, a statistical analysis of the spatial distribution of these landslides is performed using the landslide area percentage (LAP), defined as the percentage of the area affected by the landslides, and landslide number density (LND), defined as the number of landslides per square kilometer. The purpose is to clarify how the landslides correlate the control factors, which are the elevation, slope angle, slope aspect, slope position, distance from drainages, lithology, distance from the surface rupture, and peak ground acceleration (PGA). The results show that both LAP and LND have strongly positive correlations with slope angle and negative correlations with distance from the surface rupture and distance from drainages. The highest LAP and LPD values are in places of elevations from 3,800 to 4,000 m. The slopes producing landslides are mostly facing toward NE, E, and SE. The geological units of Q4 al-pl, N, and T3 kn 1 have the highest concentrations of co-seismic landslides. No apparent correlations are present between LAP and LND values and PGA. On both sides of the surface rupture, the landslide distributions are almost similar except a few exceptions, likely associated with the nature of the strike-slip seismogenic fault for this event. The bivariate statistical analysis shows that, in descending order, the earthquake-triggered landslide impact factors are distance from surface rupture > slope angle > distance from drainages > lithology > PGA. Besides, as the detailed co-seismic landslides inventories related to strike-slip earthquakes are still few compared with that of thrusting-fault earthquakes, this case study would shed new light on the subject. For instance, the landslide spatial distribution on both sides of the strike-slip seismogenic fault is rather different from that of thrusting-fault earthquakes. It reminds us to take different strategies of measures for prevention and mitigation of landslides induced by earthquakes with different mechanisms.  相似文献   

2.
走滑断裂型地震诱发的滑坡在断裂两盘的空间分布差异   总被引:2,自引:0,他引:2  
许冲  徐锡伟 《地质通报》2012,31(4):532-540
以玉树地震滑坡为实例,选择高程、坡度、坡向、坡位、水系、地层岩性、同震地表破裂、地震动峰值加速度(PGA)8个因子,以地震滑坡面积百分比(LAP)与滑坡点密度(LND)为指标,研究走滑断裂型地震诱发滑坡在断裂两盘的空间分布差异。在分析这些影响因子的断裂两盘的差异的基础上,基于LAP与LND两个指标详细分析断裂两盘每个因子内部级别滑坡发育的情况。结果表明,总体上北盘的滑坡较南盘发育,除了个别因子级别内南北盘滑坡差别较大外,大部分表现为南北盘滑坡分布情况类似。总之,玉树地震滑坡在断裂两盘的空间分布基本类似,只是在某些因子分级内存在一定的差异。  相似文献   

3.
On May 12, 2008, at 1428 hours (Beijing time), a catastrophic earthquake, with a magnitude of Ms 8.0, struck the Sichuan Province, China. About 200,000 landslides, as a secondary geological hazard associated with the earthquake, were triggered over a broad area. These landslides were of almost all types such as shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches. Some of these landslides damaged and destroyed large part of some towns, blocked roads, dammed rivers, and caused other serious damages. The purpose of this study is to detect correlations between landslide occurrence and the surface rupture plane, ground shaking conditions (measured by peak ground acceleration, PGA), lithology, slope gradient, slope aspect, topographic position, and distance from drainages by using two indices, landslide area percentage (LAP) and the landslide number density (LND), based on geographic information system (GIS) technology and statistical analysis method in a square region (study area) of Beichuan County, Sichuan Province, China. There were 5,096 landslides related with the earthquake which were delineated by visual interpretation and selected field checking throughout the study area. The total area (horizontal projection) of the 5,096 landslides is about 41.103 km2. The LAP, which is defined as the percentage of the plane area affected by landslides, was 10.276 %, and the LND, means the number of landslides per square kilometers, was 12.74 landslides/km2. Statistical analysis results show that both LAP and LND have a positive correlation with slope gradient and a negative correlation with distance from the surface rupture. However, the correlation between the occurrence of landslides with PGA, topographic position, and distance from drainages are uncertain, or has just a little positive correlation. The correlation between landslide and slope aspect also shows the effect of the directivity of the seismic wave. The Zbq formation had the most concentrated landslide activity with the LND value of 21.78 landslides/km , 2 and the ∈1 q Gr. geological units had the highest LAP value. Furthermore, weight index (W i) model is performed with a GIS platform to derive landslide hazard index map. The success rate of the model was 71.615 % and, thus, it was valid. In addition, comparison of five landslide controlling parameters’ influence on landslide occurrences was also carried out.  相似文献   

4.
2010年4月14日07时49分(北京时间),青海省玉树县发生了Ms7.1级大地震。作者基于高分辨率遥感影像解译与现场调查验证的方法,圈定了2036处本次地震诱发滑坡。这些滑坡受地震地表破裂控制强烈,规模相对较小,常常密集成片分布。滑坡类型多样,以崩塌型滑坡为主,还包括滑动型、流滑型、碎屑流型、复合型等类型的滑坡。本文基于地理信息系统(GIS)与遥感(RS)技术,应用逻辑回归模型开展玉树地震滑坡危险性评价,并对结果合理性进行检验。应用GIS技术建立玉树地震滑坡灾害及相关滑坡影响因子空间数据库,选择高程、斜坡坡度、斜坡坡向、斜坡曲率、与水系距离、坡位、断裂、地层岩性、归一化植被指数(NDVI)、公路、同震地表破裂、地震动峰值加速度(PGA)共12个因子作为玉树地震滑坡影响因子,在GIS平台下将这些因子专题图层栅格化。应用逻辑回归模型得到每个因子分级的回归系数,然后建立滑坡危险性指数分布图。利用玉树地震滑坡空间分布图对滑坡危险性指数图进行检验,正确率达到83.21%。滑坡危险性分级结果表明,在占研究区总面积4.97%的"很高危险度"的较小范围内,实际发育滑坡数量为766个,占总滑坡面积的比例高达37.62%,表明地震滑坡危险性评价结果良好。不同危险性级别的滑坡点密度统计结果表明,滑坡点密度随着危险性级别的升高而非常迅速的升高。  相似文献   

5.
2008年汶川地震滑坡详细编目及其空间分布规律分析   总被引:3,自引:0,他引:3  
最新研究成果表明, 2008年5月12日汶川MS 8.0级地震触发了超过197000处滑坡。首先,基于GIS与遥感技术构建了汶川地震滑坡的3类编目图,分别为单体滑坡面分布数据、滑坡中心点位置和滑坡后壁点位置。构建方法为基于地震前后高分辨率遥感影像的目视解译方法,区分单体滑坡并圈定其边界,对滑坡后壁进行识别与定点,并开展了部分滑坡的野外验证工作。这些滑坡分布在一个面积大约为110000km2的区域内,滑坡总面积约为1160km2。选择一个面积约为44031km2的区域作为研究区,区内滑坡数量为196007个,滑坡面积为1150.622km2,这是最详细完整的汶川地震滑坡编录成果,也是单次地震事件触发滑坡最多的记录。其次,开展研究区内的地震滑坡空间分布规律的研究。基于滑坡面与滑坡中心点分别构建滑坡空间分布面积密度图与点密度图,结果表明:滑坡多沿着映秀北川断裂分布,多发生在断裂的上盘。滑坡的高密度区位于映秀北川同震地表破裂的南西段(映秀镇与北川县之间)的上盘区域,这一区域恰对应着逆冲分量为主的断裂上盘,表明逆冲断裂对上盘区域发生滑坡的极强烈的控制作用,而该区域正是形变最大的区域,因此说明是地震滑坡发生的强烈控制作用。基于滑坡面密度(LAP)、滑坡中心点密度(LCND)与滑坡后壁点密度(LTND)这3个衡量指标,使用统计分析方法,评价了汶川地震滑坡与地震参数、地质参数、地形参数的关系。结果表明:LAP、LCND与LTND这3个衡量指标与坡度、地震烈度与PGA存在明显的正相关关系; 与距离震中、距离映秀北川同震地表破裂存在负相关关系; 斜坡曲率越接近0,滑坡越不易发生; LAP、LCND与LTND的高值高程区间为1200~3000m; 滑坡发生的优势坡向为E、SE、S方向; 滑坡发育的易发岩性为砂岩与粉砂岩(Z)、花岗岩; 滑坡与坡位的相关关系不太明显。统计结果还表明LCND与LTND两个衡量指标的差异对地震与地质因子不敏感,而对地形因子较敏感。最后将本文的统计结果与以往的汶川地震滑坡空间分布规律统计成果进行了一些对比,对比结果表明,对于某些因子,如高程、岩性、距离震中、距离映秀北川断裂的统计分析结果,采用不完整的滑坡分布数据或点数据,与采用较完整的滑坡分布面数据会有一定的差异,这种差异并未出现在针对坡度与坡向等因子的统计对比结果中。总之,作者认为一个完备、详细的地震滑坡分布面要素编目图是地震滑坡空间分布规律定量分析、危险性定量分析与滑坡控制的地震区地貌演化研究的重要基础,否则,与实际情况相比,得到统计结果会有一定的偏差,本文的研究成果与以往成果的对比结果证明了这一点。  相似文献   

6.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

7.
On July 22, 2013, an earthquake of Ms. 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also a few deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2400 m–2600 m of absolute elevation, and 200 m–300 m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number and area of landslides and the highest landslide number and area density values. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault, which indicates the effect of seismogenic fault on co-seismic landslides. In addition, the area affected by landslides related to the earthquake is compared to the relationship of “area affected by landslides vs. earthquake magnitude” constructed based on earthquakes worldwide, and it is shown that the area affected by landslides triggered by the Minxian–Zhangxian earthquake is larger than that of almost all other events with similar magnitudes.  相似文献   

8.
野外调查发现,2010年4月14日青海玉树Ms7.1级地震同震地表破裂带长约65km,破裂带走向为310°,破裂面向NE陡倾,地表破裂带由2部分组成,其中西侧部分长约19km,东侧部分长约30km,两者之间存在约15km的无破裂区。地表破裂以右阶雁行状破裂分布为主要特征,呈现左旋走滑性质,伴随有垂直位移。统计结果显示,同震地表破裂垂直位移 (dv)与水平位移 (dh)的比值在0.13~0.53之间,地貌累积dv与累积dh比值为0.27~0.63。同震dv/dh与地貌dv/dh的相似显示玉树南山的形成和玉树地震具有同样的运动学和动力学性质,玉树南山的形成是地质历史上沿玉树断裂多次类似于玉树地震的地震活动的结果,计算出需要1800~2600次地震才能造成玉树南山的隆升。前人研究本段断层地震复发周期为120~200年,计算出断层开始活动时间不晚于20万~40万年以前。  相似文献   

9.
In recent years, earthquake-triggered landslides have attracted much attention in the scientific community as a main form of seismic ground response. However, little work has been performed concerning the volume and gravitational potential energy reduction of earthquake-triggered landslides and their severe effect on landscape change. This paper presents a quantitative study on the volume, gravitational potential energy reduction, and change in landscape related to landslides triggered by the 14 April 2010 Yushu earthquake. At least 2,036 landslides were triggered by the earthquake. A total landslide scar area of 1.194 km2 was delineated from the visual interpretation of aerial photographs and satellite images and was supported by selected field checking. In this paper, we focus on possible answers to the following five questions: (1) What is the total volume of the 2,036 landslides triggered by the earthquake, and what is the average landslide erosion thickness in the earthquake-stricken area? (2) What are the elevations of all landslide materials in relation to pre- and post-landsliding? (3) How much was the gravitational potential energy reduced due to the sliding of these landslide materials? (4) What is the average elevation change caused by these landslides in the study area? (5) What is the vertical change of the regional centroid position above sea level, as induced by these landslides? It is concluded that the total volume of the 2,036 landslides is 2.9399?×?106 m3. The landslide erosion thickness throughout the study area is 2.02 mm. The materials of these landslides moved from an elevation of 4,145.243 to 4,104.697 m, resulting in a decreased distance of 40.546 m. The gravitational potential energy reduction related to the landslides triggered by the earthquake was 2.9213?×?1012 J. The average regional elevation of the study area is 4,427.160 m, a value consistent with the assumption that the accumulated materials were remained in situ. This value changes from 4,427.160 to 4,427.158 m with all landslide materials moved out of the study area, resulting in a reduction in elevation of 2 mm. Based on the assumption that all landslide materials moved out of the study area, the elevations of the centroid of the study area’s crust changed from 2,222.45967 to 2,222.45867 m, which means the centroid value decreased by 1 mm. This value is 0.001 mm when assuming that the materials were remained in situ, which is almost negligible, compared with the situation of “all landslide materials moved out of the study area.”  相似文献   

10.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   

11.
<正>The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake.  相似文献   

12.
The 2008 Wenchuan earthquake with Ms8.0 triggered extensive throwing-pattern landslides in the area within or near the seismic faults. The resultant landslides from this earthquake brought to the fore the effect of vertical earthquake acceleration on landslide occurrence. The pseudostatic analysis and the dynamic response on landslide stability due to the Wenchuan earthquake are studied with the Chengxi (West Town) catastrophic landslide used as a case study. The results show that the epicenter distance is an important factor which affects the vertical acceleration and thus the stability of landslide. Also, the vertical acceleration was found to have a significant impact on the FOS of landslide if the earthquake magnitude is quite large. Within the seismic fault, the amplitude effect of vertical acceleration is very dominant with the FOS of landslide, for vertical acceleration ranging from positive to negative, having a variation of 25 %. The variation of FOS of landslide for vertical acceleration ranging from positive to negative are 15 and 5 % for landslides near seismic fault and outside seismic fault, respectively. For landslide with a slope angle <45°, the FOS of landslide with both horizontal and vertical accelerations is significantly greater than the one without vertical acceleration. Further, the results computed from both the pseudostatic method and dynamic analysis reveal that the FOS during the earthquake varied significantly whether vertical acceleration is considered or not. The results from this study explain why lots of throwing-pattern catastrophic landslides occurred within 10 km of the seismic fault in the Wenchuan earthquake.  相似文献   

13.
2010年玉树7.1级地震诱发滑坡特征及其地震地质意义   总被引:3,自引:0,他引:3  
2010年玉树7.1级地震造成了一系列次生地质灾害。笔者在玉树灾区地震地质灾害调查基础上,结合Quickbird高分辨率遥感影像数据和航片影像数据,以目视解译为主,共提取了542处地震滑坡,并首次发现了11处古地震滑坡。调查研究结果显示,玉树地震滑坡主要包括崩塌、狭义的滑坡和土溜等三种类型。其中地震崩塌占到了90%以上,按其物质成分可进一步划分为碎屑型崩塌、碎屑流型崩塌和岩崩等三类。地震滑坡的空间展布特征显示,该区80%以上的地震滑坡集中分布在以玉树活动断层为轴的长约95km、两侧宽2km的廊带区内,并与发震断层距离和宏观震中有很好的相关性,其高密度区与同震地表破裂的空间分段性也有很好的对应关系,体现出典型的走滑型发震断层的控灾特点。同时,还进一步分析了山体坡度、坡体形态、临空面高度和地层岩石与岩体完整度等因素对地震滑坡总体分布的影响。对古地震滑坡的初步研究发现,古地震滑坡的规模、期次和分布特征间接地反映出玉树断裂带在全新世期间曾发生过多次震级强度明显大于本次玉树7.1级地震的古地震事件,这为更深入探索玉树断裂带古地震事件提供了另一种重要的研究途径。此外,地震滑坡分布与地表破裂和极震区破坏程度之间的密切空间关系指示,地震滑坡也可以成为快速圈定宏观震中以及开展极震区地震烈度评价等方面的重要指标。  相似文献   

14.
The Ms8.0 Wenchuan earthquake that occurred on 12 May 2008 in southwestern China and triggered numerous landslides is one of the stronger ones in the steep eastern margins of the Tibetan Plateau. The surfaces of these landslides have recovered gradually with vegetation, which provide useful information about the evolution of geologic environment as well as the long-term assessment of landslides after earthquake. The Mianyuanhe watershed shows many co-seismic landslides. The active fault passing through its center is selected as a study area aiming to analyze the annual surface recovery rate (SRR) of landslides by interpretation of remote-sensing images in five periods from 2008 to 2013. The results are here described. (1) Although a large amount of loose deposits were transformed into debris flows, the surfaces of the landslides recovered rapidly with vegetation and almost no landslides occurred at new sites after the Wenchuan earthquake. In the year 2008, the exposed surface projected area (ESPA) of the landslides showed a total area of 56.3 km2 and covered 28.9 % of the study area, which was reduced rapidly to 19.1 % in 2011 and 15.8 % in 2013. (2) The study area was divided into four geologic units, including clastic rocks, melange zone, carbonate rocks, and magmatic rocks. Smaller ESPAs and higher SRRs were found in the former two units versus the latter ones. (3) A single large landslide shows an SRR lower than a group of smaller ones having an equal total surface, while the SRRs of debris flows are lower than those of rockfalls and landslides. (4) The vegetation cover would return to the pre-earthquake level in 2020 approximately, which indicates that the impact of the Wenchuan earthquake on landslides and debris-flows activities would cease almost completely.  相似文献   

15.
The Daguangbao landslide is the largest co-seismic landslide triggered by the Wenchuan earthquake (Ms 8.0) occurred on 12 May 2008. The landslide, which is 4.6 km long and 3.7 km wide, involves a volume of approximately 1.2 × 109 m3. An exposed slip surface, situated at the southern flank of its source area, was observed with a length of 1.8 km along the main sliding direction and an area of 0.3 km2. To study the geological and tectonic characteristics of the source area and their contributions to the landslide formation during the earthquake, detailed geological investigations were firstly conducted. And it is reached that the landslide occurred on the northwestern limb of the Dashuizha anticline with its scarp showing several geological structures, including joint sets, local faults, and folds. These tectonic-related structures potentially influenced the failure of the landslide. Secondly, further investigations were focused on the inclined planar sliding surface using 12 exploratory trenches, nine boreholes, a tunnel, borehole sonic data, and micro-images. These data reveal that the rock mass along the sliding surface was the fragmented rock of a bedding fault. A pulverized zone was observed on the sliding surface, which was the zone of shear localization during the landslide. This suggests that the shear failure of the Daguangbao landslide developed within the bedding fault. The rapid failure of the landslide was associated with the degradation of the rock mass strength of the bedding fault both before and during the 2008 Wenchuan earthquake. With this study, we propose that a pre-existing large discontinuity within a slope may be the basis for initiating a large landslide during earthquake.  相似文献   

16.
An Ms7.0 earthquake, focal depth 13 km, struck Lushan on April 20, 2013, caused 196 deaths and 21 missing, 13,484 injuries, and affected more than two million people. A field investigation was taken immediately after the quake, and the induced hazards were analyzed in comparison with the Wenchuan earthquake. We have identified 1,460 landslides and avalanches and four dammed lakes, which were generally small and concentrated on high elevation. Avalanches and rockfalls developed in cliffs and steep slopes of hard rocks, including Jinjixia of Baosheng Town and Dayanxia of Shuangshi Town, Lushan, and the K317 section the Xiaoguanzi section north to Lingguan Town along the provincial highway S210. Landslides were relatively less, mainly in moderate and small scales, developing in sandstone, shale, and loose colluviums. Only one single large landslide was observed to turn into debris slide-flow. Dammed lakes were formed by avalanches and landslides, all in small size and of low danger degree. The earthquake-induced hazards distributed in belt on the hanging wall along the faults, and their major controlling factors include tectonics, lithology, structure surface, and landform. More than 99 % landslides were within 30 km to the epicenter, and 678 within 10 km, accounting for 46 % of the total; about 50 % landslides were distributed on slopes between 35° and 55°, and 11 % on slope exceeding 75°; 60 % on slopes at the altitudes between 1,000 and 1,500 m, 77 % on slopes between 900 and 1,500 m; and 24 and 62 % in hard rocks and section between hard and soft rocks, respectively. Compared with the case of Wenchuan earthquake, both the number and extension of landslides and avalanches in Lushan earthquake-affected area are much smaller, only 5.53 % in number and 0.57 % in area. The earthquake has increased the instability of slope and potentiality of landslide and debris flow. Accordingly, the active period is expected to be relatively short comparing with that in Wenchuan earthquake-hit area. However, the insidious and concealed hazards bring difficulty for risk investigation.  相似文献   

17.
The 2005 northern Pakistan earthquake (magnitude 7.6) of 8 October 2005 occurred in the northwestern part of the Himalayas. We interpreted landslides triggered by the earthquake using black-and-white 2.5-m-resolution System Pour l’Observation de la Terre 5 (SPOT 5) stereo images. As a result, the counts of 2,424 landslides were identified in the study area of 55 by 51 km. About 79% or 1,925 of the landslides were small (less than 0.5 ha in area), whereas 207 of the landslides (about 9%) were large (1 ha and more in area). Judging from our field survey, most of the small landslides are shallow rock falls and slides. However, the resolution and whitish image in the photos prevented interpreting the movement type and geomorphologic features of the landslide sites in detail. It is known that this earthquake took place along preexisting active reverse faults. The landslide distribution was mapped and superimposed on the crustal deformation detected by the environmental satellite/synthetic aperture radar (SAR) data, active faults map, geological map, and shuttle radar topography mission data. The landslide distribution showed the following characteristics: (1) Most of the landslides occurred on the hanging-wall side of the Balakot–Garhi fault; (2) greater than one third of the landslides occurred within 1 km from the active fault; (3) the greatest number of landslides (1,147 counts), landslide density (3.2 counts/km2), and landslide area ratio (2.3 ha/km2) was found within Miocene sandstone and siltstone, Precambrian schist and quartzite, and Eocene and Paleocene limestone and shale, respectively; (4) there was a slight trend that large landslides occurred on vertically convex slopes rather than on concave slopes; furthermore, large landslides occurred on steeper (30° and more) slopes than on gentler slopes; (5) many large landslides occurred on slopes facing S and SW directions, which is consistent with SAR-detected horizontal dominant direction of crustal deformation on the hanging wall.  相似文献   

18.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

19.
潘家伟  李海兵  吴富峣  李宁  郭瑞强  张伟 《岩石学报》2011,27(11):3449-3459
2010年4月14日,青海省玉树地区发生Ms7.1级地震,造成大量人员伤亡和财产损失.地震发生后,我们对地震地表破裂带进行了详细的考察,并对同震位移量进行了精确的测量.根据野外考察和测量的结果,对玉树地震的地表破裂特征、同震位移量及其分布特征进行了分析,并对地震的破裂机制和破裂过程进行了探讨,取得如下认识:(1)玉树地震形成了沿鲜水河断裂带西北段(甘孜-玉树断裂)分布的东、西两条地表破裂带,西段破裂带分布在微观震中附近的隆宝湖拉分盆地中,长约19km;东段破裂带沿扎曲河南岸及巴塘河西岸山坡展布,长度约31km;上述两条破裂带之间存在约15km的地表破裂空区;(2)野外测量获得玉树地震的最大同震位移量为2.3m,位于东段地表破裂带中部郭央烟宋多附近;(3)地表破裂和野外构造地貌特征均反映了发震断层处于走滑伸展环境,断层左旋走滑过程中伴随正断作用;(4)地震波反演结果和地表破裂分布特征表明,玉树地震的破裂过程包括两次子事件,分别在地表形成了隆宝湖破裂带和扎曲河、巴塘河破裂带,隆宝湖及玉树县城西侧的山间谷地是在甘孜-玉树断裂长期活动的破裂带阶区转换拉张过程中形成的两个拉分盆地.  相似文献   

20.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号