首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
太阳系外行星探测方法及统计特征   总被引:1,自引:1,他引:0  
太阳系外行星的探测和研究在过去十几年取得了重大进展,仅2007年就发现62颗太阳系外行星,随着行星物理学、天体生物学等学科的兴起,必将掀起对太阳系外行星研究的一次浪潮.简要回顾了太阳系外行星研究的发展历史,介绍了探测太阳系外行星的主要方法和手段,并对方法本身的特点展开分析论述,列出了各种方法应用的最新进展.对已发现的270多颗太阳系外行星进行了统计分析,得出了一些预见性的结论.  相似文献   

2.
宇宙信息     
谢天 《天文爱好者》2009,(12):14-17
HARPS新发现32颗太阳系外行星 高精度视向速度行星搜寻(HARPS)计划宣布新发现了32颗太阳系外行星,这使得系外行星的发现总数超过了400颗。这批新发现的系外行星涵盖了过去发现的所有类型,从热类木星、超级海王星和超级地球再到低质量、贫金属恒星周围以及多行星系统中的行星。  相似文献   

3.
截止到2014年4月21日,已发现了1490多颗系外行星和3705颗Kepler候选体。这从观测角度证明了行星在银河系中是普遍存在的。对系外行星的研究丰富并加深了人们对行星形成与演化的认识。另外,新的观测与发现也不断提出新的科学问题。本论文开展了类地行星的形成演化、内部结构以及大气逃逸的研究。  相似文献   

4.
王素 《天文学报》2011,52(4):355-356
自从Maryor和Queloz于1995年在51Pegb周围发现了第1颗主序恒星系统内的行星以来,人类已经利用越来越精密的探测方法获得了更多的太阳系外行星系统的信息.截至2010年3月,人类已经探测到了431颗太阳系外行星,其中包含了45个多行星系统.从统计结果来看,系外行星系统的构型以及行星的特点与太阳系存在很多差异.研究这些系统的形成过程可以对太阳系的形成有更深刻的理解,并将推进行星系统形成理论的发展.  相似文献   

5.
近30年来的系外行星探测揭示了行星在宇宙中普遍存在的事实.为了深入研究适宜生命居住行星的普遍性,一方面需要了解宜居行星的特性;另一方面可以通过分析已发现系外行星的分布特征,推算该类行星在恒星周围的存在几率.在目前已发现的系外行星中,凌星法发现的占据了绝大多数,如Kepler空间望远镜所观测的系外行星共有2344颗. 2018年Kepler正式退役,其科学团队发布了最终版的Kepler Data Release (DR25),包含观测季度Q1–Q17的恒星共198709颗.通过对Kepler数据的分析,使用逆检测效率法和最大似然分析法两种不同的方法对系外行星半径周期参数空间内的行星生成率进行了估算,同时将计算样本根据恒星的光谱类型进行分类,分别估算得到了F、G、K型的Kepler恒星周围的行星生成率及其整体的生成率.对于半径范围1–20 R(R为一个地球半径),轨道周期范围0.4–400 d的Kepler凌星系外行星,宿主恒星为F型时逆检测效率法和最大似然法估算得到的行星生成率分别为0.36±0.02和0.47±0.02,宿主恒星为G型时的...  相似文献   

6.
天文学家探测太阳系外的行星,直到上世纪90年代才有比较可靠的结果。截至2009年2月18日,已发现系外行星340颗。发现系外行星是非常困难的。远至几十、几百万光年的恒星和上百亿光年的星系,能够顺利地进入天文学家的视野,是因为它们有强大的辐射。  相似文献   

7.
凌星太阳系外行星巡天卫星正在革新人类对太阳邻域中行星的认识,但发现新的行星只是开始。1995年,在类太阳恒星旁发现了首颗太阳系外行星。到2005年,太阳系外行星搜寻仍处于襁褓中。天文学家当时依然不清楚,环绕其他恒星的行星是普遍存在的,还是罕见的个案。  相似文献   

8.
第一颗系外行星仙王座γ有许多与众不同之处。其一,它是未来的北极星。一千年以后,它将比现在的北极星勾陈一更接近北天极。另一个与众不同之处在于,它拥有第一个被发现的系外行星。发现这颗系外行星的科学家们并不幸运,他们花了几十年的时间才最终确认这颗系外行星真实存在。  相似文献   

9.
前言 近年来,探测太阳系外行星的新发现层出不穷,不断吸引着公众的眼球:包含两颗地球大小行星的五行星系统、位于宜居带可能存在液态水的行星、围绕双星系统运动的行星……不仅仅是天文学家们在致力于系外行星的搜寻和研究,公众们同样对于系外行星、地外文明这一未知领域充满了浓厚的兴趣。  相似文献   

10.
在目前已发现的系外行星中,绝大多数是由视向速度法和凌星法探测得到的,天体测量法仅发现了1颗.gaia卫星数据即将发布,天体测量法将逐步成为系外行星探测的重要方法之一.基于天体测量法给出的恒星位置参数序列,讨论了在求解行星质量和轨道参数时涉及的动力学条件方程计算问题,给出了具体微分改正公式,同时也进行了必要的仿真模拟计算.建立的方法可以较容易地推广到多行星系统.  相似文献   

11.
The planets with a radius < 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius < 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

12.
Since 1995, more than 200 extra-solar planets have been discovered, demonstrating not only that planetary systems are common, but also that planets may come in a large variety of flavors. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems. In this paper we describe the major techniques used to search for extra-solar planets. In particular, we discuss in more detail the radial-velocity and the transit techniques, responsible for the discovery of the bulk of the known planets orbiting solar-type stars. We then present the main results from the planet surveys, describing the global properties of the newfound worlds.  相似文献   

13.
Today there are more than 340 extra-solar planets in about 270 extra-solar systems confirmed. Besides the observed planets there exists also the possibility of a Trojan planet moving in the same orbit as the Jupiter-like planet. In our investigation we take also into account the habitability of a Trojan planet and whether such a terrestrial planet stays in the habitable zone. Its stability was investigated for multi-planetary systems, where one of the detected giant planets moves partly or completely in the habitable zone. By using numerical computations, we studied the orbital behaviour up to 107 years and determined the size of the stable regions around the Lagrangian equilibrium points for different dynamical models for fictitious Trojans. We also examined the interaction of the Trojan planets with a second or third giant planet, by varying its semimajor axis and eccentricity. We have found two systems (HD 155358 and HD 69830) that can host habitable Trojan planets. Another aim of this work was to determine the size of the stable region around the Lagrangian equilibrium points in the restricted three body problem for small mass ratios μ of the primaries μ ≤ 0.001 (e.g. Neptune mass of the secondary and smaller masses). We established a simple relation for the size depending on μ and the eccentricity.  相似文献   

14.
We argue that all transient searches for planets in globular clusters have a very low detection probability. Planets of low-metallicity stars typically do not reside at small orbital separations. The dependence of planetary system properties on metallicity is clearly seen when the quantity   I e ≡ M p[ a (1 − e )]2  is considered;   M p, a   and e are the planet mass, semimajor axis and eccentricity, respectively. In high-metallicity systems, there is a concentration of systems at high and low values of I e , with a low-populated gap near   I e ∼ 0.3 M J au2  , where M J is Jupiter's mass. In low-metallicity systems, the concentration is only at the higher range of I e , with a tail to low values of I e . Therefore, it is still possible that planets exist around main-sequence stars in globular clusters, although at small numbers because of the low metallicity, and at orbital periods of ≳10 d. We discuss the implications of our conclusions on the role that companions can play in the evolution of their parent stars in globular clusters, for example, influencing the distribution of horizontal branch stars on the Hertzsprung–Russell diagram of some globular clusters, and in forming low-mass white dwarfs.  相似文献   

15.
We describe a method of estimating the abundance of short-period extra-solar planets based on the results of a photometric survey for planetary transits. We apply the method to a 21-night survey with the 2.5-m Isaac Newton Telescope of ∼32 000 stars in a ∼0.5 × 0.5 deg2 field including the open cluster NGC 7789. From the colour–magnitude diagram, we estimate the mass and radius of each star by comparison with the cluster main sequence. We search for injected synthetic transits throughout the light curve of each star in order to determine their recovery rate, and thus calculate the expected number of transit detections and false alarms in the survey. We take proper account of the photometric accuracy, time sampling of the observations and criteria (signal-to-noise ratio and number of transits) adopted for transit detection. Assuming that none of the transit candidates found in the survey will be confirmed as real planets, we place conservative upper limits on the abundance of planets as a function of planet radius, orbital period and spectral type.  相似文献   

16.
1 INTRODUCTION In the past years, we were thrilled to the reports of discoveries of many planets around stars.These planetary systems outside the solar system (if exist) provide not only an independenttest of the formation theory of the solar system but also a chance to search for extraterrestriallife in the universe. Many studies have been made to identify the particularities of these stars,among which spectroscopic studies (e.g. Gonzalez et al. 2001; Santos et al. 2001; Zhao etaL. 2001…  相似文献   

17.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

18.
The probability of the detection of Earth-like exoplanets may increase in the near future after the launch of the space missions using the transit photometry as observation method. By using this technique only the semi-major axis of the detected planet can be determined, and there will be no information on the upper limit of its orbital eccentricity. However, the orbital eccentricity is a very important parameter, not only from a dynamical point of view, since it gives also information on the climate and the habitability of the Earth-like planets. In this paper a possible procedure is suggested for confining the eccentricity of an exoplanet discovered by transit photometry if an already known giant planet orbits also in the system.  相似文献   

19.
With several detections, the technique of gravitational microlensing has proven useful for studying planets that orbit stars at Galactic distances, and it can even be applied to detect planets in neighbouring galaxies. So far, planet detections by microlensing have been considered to result from a change in the bending of light and the resulting magnification caused by a planet around the foreground lens star. However, in complete analogy to the annual parallax effect caused by the revolution of the Earth around the Sun, the motion of the source star around the common barycentre with an orbiting planet can also lead to observable deviations in microlensing light curves that can provide evidence for the unseen companion. We discuss this effect in some detail and study the prospects of microlensing observations for revealing planets through this alternative detection channel. Given that small distances between lens and source star are favoured, and that the effect becomes nearly independent of the source distance, planets would remain detectable even if their host star is located outside the Milky Way with a sufficiently good photometry (exceeding present-day technology) being possible. From synthetic light curves arising from a Monte Carlo simulation, we find that the chances for such detections are not overwhelming and appear practically limited to the most massive planets (at least with current observational set-ups), but they are large enough for leaving the possibility that one or the other signal has already been observed. However, it may remain undetermined whether the planet actually orbits the source star or rather the lens star, which leaves us with an ambiguity not only with respect to its location, but also to its properties.  相似文献   

20.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号