首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary The F-rich Hongshan pluton in the eastern Nanling Range, southern China, is a topaz-bearing albite leucogranite. It is distinctive from other topaz-bearing felsic rocks in South China with respect to age, size, geochemical evolution and topaz mode and morphology. The Hongshan granites are highly peraluminous and characterized by high K2O/Na2O, Si, Rb, Cs, Nb, Ta and F, and low Ca, Ba, Sr, Zr, Hf, P, K/Rb, Zr/Hf and Eu/Eu*. The granites show significant trace-element variations with magma evolution, with increasing Rb, Cs, Nb, Ta, Sn, W and decreasing Sr, Ba, Zr, Hf, Y, REE, Pb, Th, K/Rb, Zr/Hf, Th/U and Eu/Eu*. These changes dominantly reflect fractional crystallization of plagioclase, biotite and accessory minerals such as zircon and monazite. The granites also exhibit a decrease in ɛNd(t = 225 Ma) from −7.9 to −11.7 with magma evolution. Modeling shows that the Nd isotopic variation could result from assimilation of the Taoxi Group wall rocks during fractional crystallization. The Hongshan pluton also shows spatial geochemical variations; the most evolved parts are located in the southeastern part of the pluton, which would be the most likely target area for rare-metal mineralization commonly associated with other topaz-bearing granites. Zircon grains from two rock types in the Hongshan body were analyzed in situ for U–Pb ages and Hf isotopic values. The concordant zircon grains mostly range from 218 to 230 Ma with an average of 224.6 ± 2.3 Ma (Indosinian). Some zircons with different internal structures and Hf isotope compositions, as well as monazite fragments, yield U–Pb ages of ca. 280 to 240 Ma, suggesting older thermal events in the studied area. The ɛHf(t) of these older zircons is strongly negative (−12.3), implying a crustal source with a Paleoproterozoic model age, similar to that for the Proterozoic Zhoutan Group. The main (∼225 Ma) zircon population exhibits less negative ɛHf(t) (−3.0 to −7.6) and Mesoproterozoic model ages, suggesting that the original magma of the Hongshan granite was generated from deeper Mesoproterozoic crust.  相似文献   

2.
胶东地区金矿巨量金质来源一直是学界争论的焦点,很难找到有说服力的直接证据。在没有其它更有效的直接证明巨量金质来源的情况下,本文通过胶北隆起主要地质体新鲜岩石大量微量元素地球化学数据的变化规律,间接得出中生代壳幔岩浆的混合反应是巨量金质来源的关键,即郭家岭和伟德山两期壳幔岩浆的混合反应和演化可能是巨量金质来源的主要形成机制,同时更是热量供给源,而玲珑花岗岩可能是少量金质的提供者和主要赋矿地质体。胶东地区金矿主要成矿时间(130~105Ma)与郭家岭(130~125Ma)和伟德山(126~108Ma)两期花岗岩浆演化结晶时间完全吻合,说明其关系密切,岩浆混合反应和冷凝期,岩浆热液上升运移沉淀成矿。该区中生代地质体对早前寒武纪的地球化学环境有一定的继承性,中生代地壳混合了大量地幔物质,Au丰度偏高,平均为1.31×10-9,为地球化学高背景场。  相似文献   

3.
The Baishaziling greisen-type tin deposit is located in the Dayishan ore field, Nanling Range, Southern China. In this study, for the first time, we present both zircon and cassiterite UPb dating, whole-rock elements, zircon LuHf and apatite Nd isotopic compositions to better constrain the petrogenesis of granite and its genetic link with Sn mineralization. Zircon UPb ages of fine-grained granite and coarse-grained granite are 154 ± 1.8 Ma and 153 ± 2.1 Ma, respectively, which are consistent with the cassiterite UPb dating of 154 ± 5.4 Ma, implying genetic relationship between the Baishaziling granite and tin metallogenesis. The Baishaziling granites exhibit high SiO2, K2O + Na2O, Zr + Nb + Ce + Y contents, low P2O5 and Sr contents, and high ratios of Ga/Al, TFeO/(TFeO + MgO), implying A-type granite affinity with characteristics of high-K calc-alkaline and weakly peraluminous. The zircon εHf(t) values and apatite εNd(t) values of the granite vary from ?4.46 to ?1.81 and ?8.37 to ?7.10, with two-stage Hf and Nd model ages of 1.40 to 1.50 Ga and 1.52 to 1.64 Ga, indicating that they were generated by the partial melt of the Proterozoic basement with the involvement of mantle magma. In addition, formation of Dayishan granite was likely associated with an intraplate extensional setting caused by the subduction of the Palaeo-Pacific plate. The Baishaziling reduced granites have high stannum and boron contents, which are in favor of the tin mineralization.  相似文献   

4.
Neoproterozoic igneous rocks are widely distributed in the Kuluketage block along the northern margin of the Tarim Craton. However, the published literature mainly focuses on the ca. 800 Ma adakitic granitoids in the area, with the granites that intrude the 735–760 Ma mafic–ultramafic rocks poorly studied. Here we report the ages, petrography and geochemistry of two granites in the Xingdi mafic–ultramafic rocks, in order to construct a new view of the non-adakitic younger granites. LA-ICP-MS zircon U–Pb dating provided weighted mean 206Pb/238U ages of 743.0 ± 2.5 Ma for the No.I granite (G1) and 739.0 ± 3.5 Ma for the No.II granite (G2). A clear core-rim texture of similar age and a high zircon saturation temperature of ca. 849 ± 14 °C were observed for the No.I granite; in contrast, G2 has no apparent core-rim texture but rather inherited older zircons and a lower zircon saturation temperature of ca. 763 ± 17 °C. Geochemical analysis revealed that G1 is an alkaline A-type granite and G2 is a high-K calc-alkaline I-type granite. Both granites share similar geochemical characteristics of arc-related magmatic rocks and enriched Sr–Nd–Hf isotopes, likely due to their enriched sources or mixing with enriched magma. Whereas G1 and its host mafic rocks form typical bimodal intrusions of the same age and similar Sr–Nd–Hf isotope compositions, G2 is younger than its host mafic rocks and its Sr–Nd–Hf isotope composition indicates a lower crust origin. Although they exhibit arc-related geochemical features, the two granites likely formed in a rift setting, as inferred from thier petrology, Sr–Nd–Hf isotopes and regional tectonic evolution.  相似文献   

5.
The Taoxihu deposit (eastern Guangdong, SE China) is a newly discovered Sn polymetallic deposit. Zircon U-Pb dating yielded 141.8 ± 1.0 Ma for the Sn-bearing granite porphyry and 145.5 ± 1.6 Ma for the biotite granite batholith it intruded. The age of the granite porphyry is consistent (within error) with the molybdenite Re–Os isochron age (139.0 ± 1.1 Ma) of the Sn mineralization, indicating a temporal link between the two. Geochemical data show that the granite porphyry is weakly peraluminous, contain high Si, Na and K, low Fe, Mg, Ca and P, and relatively high Rb/Sr and low K/Rb values. The rocks are enriched in Rb, Th, U, K, and Pb and depleted in Ba, Sr, Ti and Eu, resembling highly fractionated I-type granites. They contain bulk rock initial 87Sr/87Sr of 0.707371–0.707730 and εNd(t) of −5.17 to −4.67, and zircon εHf(t) values from −6.67 to −2.32, with late Mesoproterozoic TDM2 ages for both Nd and Hf isotopes. This suggests that the granite porphyry was likely formed by the partial melting of the crustal basement of Mesoproterozoic overall residence age with minor mantle input.δ34SCDT values of the Taoxihu chalcopyrite and pyrite range from 0.1 to 2.1‰ (average: 0.9‰), implying a dominantly magmatic sulfur source. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the Taoxihu sulfide ores are 18.497–18.669, 15.642–15.673 and 38.764–38.934, respectively, indicating a mainly upper continental crustal lead source with minor mantle contribution. The highly fractionated and reduced (low calculated zircon Ce4+/Ce3+ and EuN/EuN1 values) nature of the ore-forming granitic magma may have facilitated the Sn enrichment and played a key role in the Sn mineralization. We propose that the ore-forming fluids at Taoxihu were of magmatic-hydrothermal origin derived from the granite porphyry, and that both the granite porphyry and the Sn mineralization were likely formed in an extensional setting, possibly related to the subduction slab rollback of the Paleo-Pacific Plate.  相似文献   

6.
The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zircon U-Pb ages and trace elements, whole rock geochemistry and Sre Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization.Zircon U-Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the premineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of(87 Sr/86 Sr)iin the range of 0.705426 -0.707363, and ε_(Nd)(t) of -3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe_2O_3/FeO values(average 1) for the whole rock and EuN/Eu*Nvalues(average 0.45), Ce~(4+)/Ce~(3+) values(average 301)for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions(syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area.  相似文献   

7.
锡矿往往与长英质岩浆岩伴生,然而锡矿形成的热能源区尚不清楚,其可能与地幔物质相关。我国云南锡矿带中出露的中-酸性岩石及碱性岩杂岩体为研究锡矿及其周围岩浆成因提供了良好的物质条件。本文报道了云南个旧地区代表性的花岗岩、辉长-闪长岩和碱性岩类新的全岩地球化学、锆石U-Pb年代学和Hf同位素数据。LA-ICP-MS锆石U-Pb定年表明上述岩石分别形成于81.43±0.46Ma(82.89±0.58M)、81.35±0.22Ma和80.35±0.72Ma,指示它们为晚白垩世近同期岩浆活动的产物。其中闪长岩、碱性岩和花岗岩中锆石的Hf同位素组成不均一,ε_(Hf)(t)分别为-4.2~+0.8、-7.5~-1.9和-8.4~+0.4。尽管这些岩体的侵入时代一致,但它们的地球化学特征和同位素特征存在差异,表明这三类火成岩来自不同的岩浆源区,三者不是同一母岩浆相互演化的关系。个旧杂岩体中花岗岩为弱过铝质岩石,SiO_2与P_2O_5含量呈负相关的关系,排除S型花岗岩的可能。亏损Zr、Nb、Sr、Eu等大离子亲石元素的特征可能为锆石、磷灰石、长石类造岩矿物分离结晶作用的结果;Zr、Nb、Ce和Y总量较低,低的FeOT/MgO比值和低的锆石饱和温度表明,指示出个旧地区的花岗岩应为高分异I型花岗质岩石而非A型花岗岩。个旧地区形成于晚白垩世时期的中基性、碱性岩石可能为不同的幔源岩浆近同时侵入的产物,底侵的幔源熔体带来热量诱发中、下地壳岩石发生部分熔融形成含矿的花岗岩,幔源岩浆对于成矿至少在能量也可能在成矿物质上有重要的贡献。  相似文献   

8.
The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (La n /Yb n ?=?0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620?Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). εNd at 620?Ma ranges from +3.4 to +6.8 (mean?=?+5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5 (mean?=?+5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740?Ma, 703?Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.  相似文献   

9.
胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究   总被引:48,自引:1,他引:47       下载免费PDF全文
关康 《地质科学》1998,33(3):318-328
采用世界上最先进的SHRIMP锆石U-Pb测年技术,对招掖地区郭家岭型花岗岩及成矿后花岗斑岩脉进行了年代学研究,精确地测定了郭家岭型花岗岩的年龄为130-126Ma,成矿后花岗斑岩脉的年龄为120±2Ma,金矿化被限定在126-120Ma之间。结合岩体年龄和与金矿化密切的空间关系及地球化学上的亲缘关系,认为郭家岭型花岗岩属造山晚期花岗岩,金矿化主要与郭家岭型花岗岩有关。该花岗岩异常高的Ba、Sr含量可作为太古宙绿岩地体环境下判别与金矿化有关花岗岩的地球化学标志。  相似文献   

10.
黑龙江老柞山金矿床是佳木斯地块中北部的大型热液叠加夕卡岩型矿床.对矿区东矿带赋矿片麻状花岗岩进行了LA-ICP-MS的U-Pb定年和Hf同位素分析,共获得3组年龄,分别为697.1±8.0、703.0±8.8和484.7±2.7 Ma.其中前2组为捕获的锆石年龄,暗示佳木斯地块南缘可能存在新元古代的结晶基底.第三组锆石年龄代表片麻状花岗岩结晶年龄.锆石原位Hf同位素测试显示,片麻状花岗岩的εHft)值为-2.4~+3.6,TDM2为1620~1390 Ma,指示片麻状花岗岩原岩可能是中元古代陆壳物质重熔.结合区域构造演化,认为片麻状花岗岩可能形成于晚泛非-早加里东期的碰撞造山作用,是麻山群深熔岩浆结晶作用的产物.  相似文献   

11.
This paper reports Rb–Sr and Sm–Nd isotope data on the gabbro–diorite–tonalite rock association of the Reft massif (eastern margin of the Middle Urals) and Lu–Hf isotope data on zircon populations from these rocks. In terms of Nd and Hf isotope composition, the rocks of the studied association are subdivided into two distinctly different groups. The first group consists of gabbros and diorites, as well as plagioclase granites from thin dikes and veins cutting across the gabbros. In terms of 43Nd/144Nd i = 0.512518–0.512573 (εNd(T) = +8.6...+9.7) and 176Hf/177Hf i = 0.282961–0.283019 (εHf(T) = +15.9...+17.9), these rocks are practically identical to depleted mantle. Their Nd and Hf model ages show wide variations, but in general are close to their crystallization time. The second group is represented by tonalites and quartz diorites, which compose a large body occupying over half of the massif area. These rocks are characterized by the lower values of 143Nd/144Nd i = 0.512265–0.512388 (εNd(T) = +3.7...+6.0) and 176Hf/177Hf i = 0.282826–0.282870 (εHf(T) = +11.1...+12.7). The TDM values of the second group are much (two–three times) higher than their geological age (crystallization time), which indicates sufficiently long crustal residence time of their source. The initial 87Sr/86Sr in the rocks of both the groups varies from 0.70348 to 0.70495. This is likely explained by the different saturation of melts with fluid enriched in radiogenic Sr. The source of this fluid could be seawater that was buried in a subduction zone with oceanic sediments and released during slab dehydration. Obtained data make it possible to conclude that the formation of the studied gabbro–diorite–tonalite association is a result of spatially and temporally close magma formation processes in the crust and mantle, with insignificant contribution of differentiation of mantle basite magma.  相似文献   

12.
张鲲 《地质与勘探》2018,54(1):102-111
本文对广西梧州思委银矿区思委岩体中细粒黑云母二长花岗岩进行了系统的锆石U-Pb年代学、岩石地球化学和Hf同位素分析研究,以深入探讨其岩石成因。LA-ICP-MS锆石U-Pb定年获得了思委岩体黑云母二长花岗岩成岩年龄为165±1Ma。思委岩体黑云母二长花岗岩为一套弱过铝质高钾钙碱性系列花岗岩,富集U、K、Pb等元素,亏损Nb、Ta、P、Ti等元素;球粒陨石标准化REE配分模式为右倾斜配分模式,轻重稀土元素分异强烈,富集轻稀土元素,重稀土元素平坦分布。锆石Hf同位素分析花岗岩锆石ε_(Hf)(t)值分布在-15.9~8.7之间,Hf同位素二阶段模式年龄(t2DM)在652~2255Ma之间,表明岩浆源区既有直接源于亏损地幔分异的新生地壳的迅速重熔,也有不同比例的古老地壳的混合作用。花岗岩成岩可能是受古太平洋板块持续俯冲作用影响,焊接板片开裂形成的岩浆上侵。  相似文献   

13.
The Songligou gold‐telluride deposit, located in Songxian County, western Henan Province, China, is one of many gold‐telluride deposits in the Xiaoqinling‐Xiong'ershan district. Gold orebodies occur within the Taihua Supergroup and are controlled by the WNW F101 Fault, and the fault was cut across by a granite porphyry dike. Common minerals in gold orebodies include quartz, chlorite, epidote, K‐feldspar, calcite, fluorite, sericite, phlogopite, bastnasite, pyrite, galena, chalcopyrite, sphalerite, tellurides, gold, bismuthinite, magnetite, and hematite, and pyrite is the dominant sulfide. Four mineralization stages are recognized, including pyrite‐quartz stage (I), quartz‐pyrite stage (II), gold‐telluride stage (III), and quartz‐calcite stage (IV). This work reports the Rb–Sr age of gold‐telluride‐bearing pyrite and zircon U–Pb age of granite porphyry, as well as S isotope data of pyrite and galena. The pyrite Rb–Sr isochron age is 126.6 ± 2.3 Ma (MSWD = 1.8), and the average zircon U–Pb age of granite porphyry is 166.8 ± 4.1 Ma (MSWD = 4.9). (87Sr/86Sr) i values of pyrite and δ34S values of sulfides vary from 0.7104 to 0.7105 and ?11.84 to 0.28‰, respectively. The obtained Rb–Sr isochron age represents the ore formation age of the Songligou gold‐telluride deposit, which is much younger than the zircon U–Pb age of the granite porphyry. Strontium and S isotopes, together with the presence of bastnaesite, suggest that the ore‐forming fluid was derived from felsic magmas with input of a mantle component and subsequently interacted with the Taihua Supergroup. Tellurium was derived from metasomatized mantle and was related to the subduction of the Shangdan oceanic crust and Izanagi plate beneath the North China Craton (NCC). This deposit is a part of the Early Cretaceous large‐scale gold mineralization in east NCC and formed in an extensional tectonic setting.  相似文献   

14.
窟窿山复式岩体位于赤峰-开原断裂以南、尚义-平泉断裂带以北的华北克拉通北缘隆起带和沽源-红山子铀成矿带 的西南段,由外侧的中粗粒碱长花岗岩和内侧的中细粒碱长花岗岩组成,两者呈侵入接触,出露面积约120 km2。SHRIMP 锆石U-Pb年龄表明,中粗粒碱长花岗岩和中细粒碱长花岗岩锆石的206Pb/238U年龄分别为129.4±1.5 Ma (MSWD=1.2) 和 134.0±1.7 Ma(MSWD=1.8),分别形成于早白垩世晚期和早白垩世早期。窟窿山花岗岩具有高硅,富钾、钠,高FeOT/MgO 比值,贫铝、镁、钙、磷的高分异特征,属准铝质-弱过铝质高钾钙碱性系列岩石。在SiO2 vs (Na2O+K2O)-CaO和SiO2 vs FeOT/(FeOT+MgO)图解中落于A型花岗岩区。ΣREE含量较低,Eu负异常明显,具燕式轻稀土富集型稀土配分曲线特征。富 集Rb,Th,U,Nb,Ta,Zr,Hf,Y等元素,亏损Sr,Ba,P,Ti等元素,10000Ga/Al=4.63~5.66(>2.6),Zr+Nb+Ce+Y=402× 10-6~713×10-6(>350×10-6),显示A型花岗岩微量元素的特征。具有异常的Sr初始比值((87Sr/86Sr)i =0.750562~0.839814),较低 的Nd初始比值(εNd(t)= -14.3~-13.2)和相对较年轻的Nd模式年龄(TDM2=2084~1996 Ma)及较低的Pb同位素组成:(206Pb/204Pb)t= 16.797~17.010, (207Pb/204Pb)t=15.406~15.434, (208Pb/204Pb)t=37.477~37.540。中粗粒碱长花岗岩和中细粒碱长花岗岩的δ18OV-SMOW分 别为5.3‰~6.2‰和0.1‰~3.1‰,后者低于正常花岗岩的δ18OV-SMOW 值(6‰~10‰) 和正常地幔的δ18OV-SMOW (5.7‰±0.3‰) 值,在铅同位素图解中窟窿山花岗岩同时带有下地壳物质和富集地幔印记,构造环境判别图解显示窟窿山花岗岩属于板内 后造山花岗岩,形成于板内伸展拉张构造背景。通过与区域上同时代A型花岗岩的对比,表明窟窿山花岗岩是华北克拉通 北缘早白垩世与岩石圈减薄相关的伸展构造体制下的产物,这种构造体制可能与太平洋板块的俯冲作用有关。综上所述, 窟窿山花岗岩的成因为古元古代源于EMI富集地幔的岩浆混有少量古老下地壳物质形成年轻下地壳,可能还与俯冲的经历 了高温热液蚀变的洋壳有关,但由于源区混染不均一导致花岗岩的氧同位素值存在差异,至早白垩世板内拉张构造环境下 发生部分熔融产生的岩浆在上侵过程中形成窟窿山花岗岩。  相似文献   

15.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   

16.
通过对前人就郭家岭花岗岩构造地质学、岩石化学、同位素年代学等地质信息资料的分析、研究,认为胶东地区郭家岭花岗闪长岩一花岗岩总体上归属于幔源岩浆与壳源岩浆混合后经分异作用而成的同熔深成型花岗岩类;主要形成于由洋壳俯冲引起的火山岛弧环境、大陆碰撞环境和弧后拉张性质的大陆边缘环境;其定位机制为:沿着NEE向挤压带从小面积到大面积频率式脉动或涌动热轻气球膨胀式定位;该岩石构造组合主体形成于早白垩世。从岩石构造组合的概念,将其定义为造山中期郭家岭弱片麻状花岗闪长岩~花岗岩组合。  相似文献   

17.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

18.
The nature of the lower crust and tectonic setting of the Chinese Altai in the early to middle Paleozoic are still hotly debated. Decoupling between zircon Hf and whole-rock Nd isotopic systems for granites results in different interpretations for the above issues. In order to solve the problem, whole-rock Nd–Hf isotopic analyses were conducted on representative early to middle Paleozoic I-type granite and strongly peraluminous granites and rhyolites from the Chinese Altai. The I-type granites show metaluminous to weakly peraluminous feature and have εNd(t) values ranging from − 2.2 to + 0.8 and εHf(t) from + 3.9 to + 12.9, respectively. The strongly peraluminous granites and rhyolites have similar εNd(t) and εHf(t) values ranging from − 3.0 to + 1.7 and from + 2.1 to + 10.4, respectively. All samples plot above the Terrestrial Array on Nd–Hf isotopic diagram, indicating significant Nd–Hf isotopic decoupling in the magma sources. These samples show flatten HREE pattern and have Lu/Hf ratios similar to the average crust, suggesting that Nd–Hf isotopic decoupling was not originated from an ancient basement with elevated Lu/Hf ratios. The observed isotopic decoupling is similar to those modern island arcs, such as the Lesser Antilles and Sunda, where Nd selectively enriched over Hf due to metasomatism in the mantle wedge and consequently resulted in decoupling between the Sm–Nd and Lu–Hf isotopic systems. Our results, combined with the available data, show that prolonged subduction and crust–mantle interaction caused the Nd–Hf isotopic decoupling in the lithospheric mantle beneath the Chinese Altai. The crust of the Chinese Altai was extracted from the lithospheric mantle and inherited the Nd–Hf isotopic decoupling feature. Therefore, the Hf, rather than Nd, isotopic data more faithfully reflect the nature of the lower crust that was quite juvenile in the Paleozoic, and the Chinese Altai represents an early Paleozoic magmatic arc possibly built near western Mongolia.  相似文献   

19.
The Maoling gold deposit is located in the southwestern part of the Liaodong rift, NE China, and has estimated reserves of 25 t. In this paper we present the results of an investigation into the geochronology and geodynamic mechanisms of igneous activity and metallogenesis within the Maoling gold deposit. New zircon U–Pb age data, biotite 40Ar/39Ar age data, whole‐rock geochemistry, and Hf isotopic analyses are presented in order to constrain the petrogenesis and mineralization of the deposit. Zircon U–Pb dating of the Wolongquan biotite monzogranite and Maoling biotite granite yielded mean ages of 194.0 ± 1.1 Ma and 196.1 ± 1.1 Ma, respectively. All the granites are characteristically high‐K calc‐alkaline, enriched in light rare earth elements and large ion lithophile elements, and depleted in high field strength elements, which is consistent with the geochemical characteristics of arc‐type magmas. The Hf isotope characteristics indicate that the granites formed by partial melting of early Paleoproterozoic crustal material. In addition, biotite 40Ar/39Ar dating indicates that the Maoling gold deposit formed at 188.9 ± 1.2 Ma, implying that the mineralization was related to both the granite intrusions. Taking into account previous data on S–Pb–O–H isotopes and our new age data, the Maoling deposit can be classified as an intrusion‐related gold deposit. Taking into account the geology of the study area and adjacent regions, we propose that the Maoling gold deposit and its associated granitic intrusions formed in a geodynamic setting that was dominated by subduction of the Paleo‐Pacific Plate beneath the Eurasian continent.  相似文献   

20.
Whole rock major and trace element and Sr-, Nd- and Hf-isotope data, together with zircon U-Pb, Hf- and O-isotope data, are reported for the Nb-Ta ore bearing granites from the Lingshan pluton in the Southeastern China, in order to trace their petrogenesis and related Nb-Ta mineralization. The Lingshan pluton contains hornblende-bearing biotite granite in the core and biotite granite, albite granite and pegmatite at the rim. In addition, numerous mafic microgranular enclaves occur in the Lingshan granites. Zircon SIMS U-Pb dating gives consistent crystallization ages of ca. 132 Ma for the Lingshan granitoids and enclaves, consistent with the Nb-Ta mineralization age of ∼132 Ma, indicating that mafic and felsic magmatism and Nb-Ta mineralization are coeval. The biotite granites contain hornblende, and are metaluminous to weakly peraluminous, with high initial 87Sr/86Sr ratios of 0.7071–0.7219, negative εNd(t) value of −5.9 to −0.3, εHf(t) values of −3.63 to −0.32 for whole rocks, high δ18O values and negative εHf(t) values for zircons, and ancient Hf and Nd model ages of 1.41–0.95 Ga and 1.23–1.04 Ga, indicating that they are I-type granites and were derived from partial melting of ancient lower crustal materials. They have variable mineral components and geochemical features, corresponding extensive fractionation of hornblende, biotite and feldspar, with minor fractionation of apatite. Existence of mafic microgranular enclaves in the biotite granites suggests a magma mixing/mingling process for the origin of the Lingshan granitoids, and mantle-derived mafic magmas provided the heat for felsic magma generation. In contrast, the Nb-Ta mineralized albite granites and pegmatites have distinct mineral components and geochemical features, which show that they are highly-fractionated granites with extensive melt and F-rich fluid interaction in the generation of these rocks. The fluoride-rich fluids induce the enrichment in Nb and Ta in the highly evolved melts. Therefore, we conclude that the Nb-Ta mineralization is the result of hydrothermal process rather than crystal fractionation in the Lingshan pluton, which provides a case to identify magmatic and hydrothermal processes and evaluate their relative importance as ore-forming processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号