首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
中国地区气溶胶的辐射强迫及其气候响应试验   总被引:15,自引:3,他引:12  
胡荣明  石广玉 《大气科学》1998,22(6):917-525
根据国内测定的排放因子数据和国家、部委及各省市统计年鉴公布的排放源数据,得到的中国大陆的1°×1°网格精度的SO2的排放分布,计算了中国地区人为扰动气溶胶的辐射强迫。应用近期开发的二维能量平衡模式计算了由该种气溶胶所引起的中国地区地面温度变化。模式结果表明,最大辐射强迫和最大地面温度变化都集中在中国的沿海和四川地区。最大辐射强迫达3 W/m2。  相似文献   

2.
基于不同共享社会经济路径(Shared Socioeconomic Pathways, SSPs)形成的8组最新的未来可能情景(SSPx-y情景),被用于第六次耦合模式比较计划(CMIP6),以据此来预估未来气候变化的可能幅度和趋势。本文主要对比分析了8组SSPx-y新情景中主要温室气体和气溶胶排放数据的基准年排放强度分布、未来排放强度的时空变化、以及在6个典型区域排放强度的逐年变化等特征。结果表明:二氧化碳(CO2)、甲烷(CH4)、黑碳(BC)、二氧化硫(SO2)在基准年的排放强度高值区都位于东亚和南亚。相比于基准年,2100年CO2和CH4在高和低辐射强迫情景下表现出的排放强度变化有显著差异。此外,所有情景下2100年的BC和SO2全球平均排放强度都弱于基准年的排放强度。在时间变化上,随着生物质能碳捕获与封存技术的不断进步,所有地区在4组不超过3.4 W/m2的低辐射强迫情景下,CO2排放强度到2100年都呈现负值。其中,南美洲的负排放最强,2100年在SSP5-3.4情景下该地区的排放强度为-0.3 kg m-2 a-1。最后,对比东亚和南亚排放强度的逐年变化可以发现,在各情景所描述的未来发展过程中,东亚的减排行动的成效都要好于南亚。  相似文献   

3.
SF6气体的辐射强迫和全球增温潜能的研究   总被引:1,自引:0,他引:1  
吴金秀  肖稳安  张华 《大气科学》2009,33(4):825-834
IPCC(2007)指出, 六氟化硫(SF6) 作为臭氧消耗物质 (ODSs) 的部分替代物质, 近年来排放量大大增加。它作为控制排放的人造长寿命温室气体之一已经被列入《京都议定书》。但是, 目前在臭氧消耗物质替代品中, 对SF6的辐射强迫和全球增温潜能的研究较少, 而且所用的谱吸收资料陈旧。本文采用最新的分子吸收数据库HITRAN2004中的SF6的吸收截面数据, 利用Shi(1981) 的吸收系数重排法, 建立了SF6的相关k分布的辐射计算方案, 在此基础上研究了SF6在晴空大气下的辐射效率和全球增温潜能, 并首次计算了SF6的全球温变潜能, 与其全球增温潜能进行了比较。本文的研究表明: SF6的辐射效率为0.512 W/m2, 经过大气寿命调整之后的辐射效率为0.506 W/m2, 二者差别不大; 根据IPCC (2007) 给出的排放情景, 到2100年, SF6在大气中的体积分数将达到35×10-12~70×10-12, 引起的相应辐射强迫将在0.004~0.028 W/m2之间变化; 相对于二氧化碳的100年全球增温潜能为2.33×104, 比IPCC(2007)的结果大2.2%; 100年的持续排放的全球增温潜能为2.26×104, 与其他长寿命人造温室气体一道, 其对全球变暖的长期影响不容忽视。  相似文献   

4.
一维辐射对流模式对云-辐射强迫的数值模拟研究   总被引:1,自引:9,他引:1  
利用一维辐射-对流气候模式, 详细研究了云量、云光学厚度以及云高等要素的变化对大气顶和地面太阳短波辐射和红外长波辐射通量以及云的辐射强迫的影响, 给出了计算这些物理量的经验拟合公式。结果表明, 云具有极为重要的辐射-气候效应。云量、云光学厚度以及云高即使只有百分之几的变化, 所带来的辐射强迫也可以与大气二氧化碳浓度加倍所产生的辐射强迫(3.75 W/m2)相比拟。例如, 当分别给它们+3%的扰动时, 即取云量变化0.015, 云光学厚度变化0.27, 以及云高变化0.15 km时(在实际的地球大气中, 这种尺度的变化是完全可能发生的), 那么,可以得到地气系统的太阳短波辐射强迫-3.10 W/m2以及红外长波辐射强迫-1.77 W/m2, 二者之和为-4.78 W/m2, 已经完全可以抵消大气二氧化碳浓度加倍所产生的辐射强迫。但是, 当云量、云光学厚度以及云高向相反方向产生类似扰动时, 所产生的辐射强迫可能极大地放大二氧化碳浓度增加所产生的增强温室效应。因此, 研究结果揭示出, 不管是为了解释过去的气候变化, 还是预测未来的气候变化, 亟待加强在一个变化了的气候环境(例如地面温度升高)下, 云将发生何种变化的研究。  相似文献   

5.
The Cloud-Aerosol-Radiation (CAR) ensemble modeling system has recently been built to better understand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking the percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60°N, 60°S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about-0.67% (-0.6 W m-2 ) and-0.82% (-2.0 W m-2 ) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2 ) and -2.12% (-7.8 W m-2 ) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.  相似文献   

6.
利用国家气候中心大气环流模式BCC_AGCM2.0,结合IPCC 第五次评估报告给出的最新有效辐射强迫的概念,模拟了自工业革命以来由于人类活动造成的甲烷浓度增加引起的有效辐射强迫及其气候效应。得出如下结论:甲烷浓度增加造成的有效辐射强迫的全球平均值为0.49 W/m2;导致全球平均地表温度上升0.31 ℃,升温主要分布在南北半球中高纬度地区;全球平均降水量增加0.02 mm/d,赤道辐合带降水中心有向北移动的趋势;地表水汽通量的变化使高纬度地区云量增加(约4%),而中低纬度地区云量减小(约-3%)。  相似文献   

7.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

8.
全球气候变暖的检测及成因分析   总被引:19,自引:4,他引:19       下载免费PDF全文
文章对近年来有关全球气候变暖中一些问题的研究进展作了总结,主要结论如下:全球平均地面气温在过去一百年来上升0.5℃。80年代是近百年来最暖的10年。90年代初继续变暖。1990年是近百年来最暖的一年。1991年仅次於1990年。但是近百年气候变暖的幅度仍未超过自然变率。近千年中,中世纪暖期(900—1300年)的温暖程度就可能与20世纪相当,而小冰期(1550—1850年)气温则可能比20世纪低1.0—1.5℃。已经证实,对几十年到几百年尺度,太阳活动强时太阳总辐射也强,但变化幅度尚待进一步确定。强火山爆  相似文献   

9.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

10.
黑碳气溶胶辐射强迫全球分布的模拟研究   总被引:15,自引:3,他引:15  
张华  马井会  郑有飞 《大气科学》2008,32(5):1147-1158
利用一个改进的辐射传输模式,结合全球气溶胶数据集(GADS),计算晴空条件下冬夏两季黑碳气溶胶的直接辐射强迫在对流层顶和地面的全球分布。计算结果表明,与温室气体引起的整层大气都是正的辐射强迫不同,黑碳气溶胶的辐射强迫在对流层顶为正值,而在地面的辐射强迫却是负值。作者从理论上解释了造成这种结果的原因。对北半球冬季和夏季而言,在对流层顶黑碳气溶胶的全球辐射强迫的平均值分别为0.085W/m2和0.155 W/m2,在地面则分别为-0.37 W/m2和-0.63 W/m2。虽然气溶胶的辐射强迫主要依赖于其本身的光学性质和在大气中的浓度,太阳高度角和地表反照率对黑碳气溶胶的辐射强迫会产生很大的影响。研究指出:黑碳气溶胶在对流层顶正的辐射强迫和在地面负的辐射强迫的绝对值都随太阳天顶角的余弦和地表反照率的增加线性增大;地表反照率对黑碳气溶胶辐射强迫的强度和分布都有重要影响。黑碳气溶胶的辐射强迫分布具有明显的纬度变化特征,冬夏两季的大值区都位于30°N~90°N之间,表明人类活动是造成黑碳气溶胶辐射强迫的主要原因。  相似文献   

11.
硫酸盐和烟尘气溶胶辐射特性及辐射强迫的模拟估算   总被引:21,自引:6,他引:21       下载免费PDF全文
张立盛  石广玉 《大气科学》2001,25(2):231-242
利用已有的硫酸盐和烟尘气溶胶折射指数资料,精确计算了这两种气溶胶从太阳短波到红外谱段的辐射特性。然后,在LLNL化学输送模式(CTM)模拟的硫酸盐和烟尘气溶胶资料及改进的气溶胶参数化基础上,在国内首次用GCM估算了这两种气溶胶引起的全球辐射强迫。结果表明:(1)西欧是全球最大的硫酸盐辐射强迫中心,最大值出现在夏季,达-5.0W/m2;(2)烟尘强迫的最大中心出现在夏季的南美和非洲中南部,为4.0W/m2;(3)南半球大陆人为气溶胶的强迫不容忽视;(4)某些地区人为气溶胶的强迫在量值上可与CO2等温室气体引起的强迫相比拟。  相似文献   

12.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   

13.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   

14.
Summary One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.  相似文献   

15.
RCP4.5: a pathway for stabilization of radiative forcing by 2100   总被引:3,自引:2,他引:1  
Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5?W?m?2 in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5?W?m?2, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.  相似文献   

16.
Recent works with energy balance climate models and oceanic general circulation models have assessed the potential role of the world ocean for climatic changes on a decadal to secular time scale. This scientific challenge is illustrated by estimating the response of the global temperature to changes in trace gas concentration from the pre-industrial epoch to the middle of the next century. A simple energetic formulation is given to estimate the effect on global equilibrium temperature of a fixed instantaneous radiative forcing and of a time-dependent radiative forcing. An atmospheric energy balance model couple to a box-advection-diffusion ocean model is then used to estimate the past and future global climalic transient response to trace-gas concentration changes. The time-dependent radiative perturbation is estimated from a revised approximate radiative parameterization, and the recent reference set of trace gas scenarios proposed by Wuebbles et al. (1984) are adopted as standard scenarios. Similar computations for the past and future have recently been undertaken by Wigley (1985), but using a purely diffusive ocean and slightly different trace gas scenarios. The skill of the socalled standard experiment is finally assessed by examining the model sensitivity of different parameters such as the equilibrium surface air temperature change for a doubled CO2 concentration [T ae (2×CO2)], the heat exchange with the deeper ocean and the trace gas scenarios. For T ae (2×CO2) between 1 K and 5 K, the following main results are obtained: (i) for a pre-industrial CO2, concentration of 270 ppmv, the surface air warming between 1850 and 1980 ranges between 0.4 and 1.4 K (if a pre-industrial CO2 concentration of 290 ppmv is chosen, the range is between 0.3 and 1 K); (ii) by comparison with the instantaneous equilibrium computations, the deeper ocean inertia induces a delay which amounts to between 6 years [for lower T ae (2×CO2)] and 23 years [for higher Tae(2×CO2)] in 1980; (iii) for the standard future CO2 and other trace gas scenarios of Wuebbles et al., the surface air warming between 1980 and 2050 is calculated to range between 0.9 and 3.4 K, with a delay amounting to between 7 years and 32 years in 2050 when compared to equilibrium computations.  相似文献   

17.
Probabilistic climate change projections using neural networks   总被引:5,自引:0,他引:5  
Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding –1.2 Wm–2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.  相似文献   

18.
平流层气溶胶的辐射强迫及其气候响应的水平二维分析   总被引:7,自引:0,他引:7  
利用比较先进的辐射模式计算了平流层气溶胶的辐射强迫,并对之进行了参数化。结果发现平流层气溶胶的辐射强迫的水平分布不仅与其本身的水平变化有关,而且与下垫面的反照率有很大的关系。利用近期开发的二维能量平衡模式模拟了皮纳图博火山气溶胶对地面平衡温度的影响,结果表明:皮纳图博火山至喷发后1年半左右降温达最大,至喷发后第5年降温已很小。  相似文献   

19.
Human activities have notably affected the Earth’s climate through greenhouse gases(GHG), aerosol, and land use/land cover change(LULCC). To investigate the impact of forest changes on regional climate under different shared socioeconomic pathways(SSPs), changes in surface air temperature and precipitation over China under low and medium/high radiative forcing scenarios from 2021 to 2099 are analyzed using multimodel climate simulations from the Coupled Model Intercomparison Project Phase 6(CMIP...  相似文献   

20.
未来20年中国气温变化预估   总被引:18,自引:6,他引:12       下载免费PDF全文
利用大约40余个气候模式和模式集合,考虑多种人类排放情景,预估到2025年前相对于1961-1990年中国的气温变化。只考虑未来人类排放增加多模式集成预估结果表明,中国年平均气温自2006到2025年的20 a期间将继续变暖0.55 ℃,至2010年年平均气温平均变暖大约为1.08 ℃(平均变暖范围为 0.73-1.54 ℃),至2020年年平均变暖约为1.43 ℃(平均变暖范围为1.10-2.09 ℃),至2025年平均变暖约为1.39 ℃(平均变暖范围为0.94-2.19 ℃)。 对1990-2005年已经出现观测事实的近16 a气候模式预估结果进行检验表明,多模式考虑多种排放情景集成,一致预估出这16 a的明显变暖趋势,但是变暖幅度略低于实际观测值。经检测证实,对2006-2025年中国气温的预估具有一定的可信度。需要指出的是,目前的预估没有考虑未来的自然变化,只考虑人类排放继续增加的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号