首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sindong Group was deposited in the north–south trending half‐graben Nakdong Trough, southern Korean peninsula. The occurrence of detrital chromian spinels from the Jinju Formation of the Sindong Group in the Gyeongsang Basin means that the mafic to ultramafic rocks were exposed in its provenance. The chromian spinels from the Jinju Formation are characterized by extremely low TiO2 and Fe3+. Moreover, their range of Cr# is from 0.45 to 0.80 and makes a single trend with Mg#. The chemistry of chromian spinels implies that the source rocks for chromian spinels were peridotites or serpentinites, which originated in the mantle wedge. To more narrowly constrain their source rocks, the Ulsan and Andong serpentinites exposed in the Gyeongsang Basin were examined petrographically. Chromian spinels in the Andong serpentinite differ from those of the Jinju Formation and those in the Ulsan serpentinite partly resemble them. Furthermore, the Jinju chromian spinel suite is similar to the detrital chromian spinels from the Mesozoic sediments in the Circum‐Hida Tectonic zone, which includes the Nagato Tectonic zone in Southwest Japan and the Joetsu Belt in Northeast Japan. This suggests that the basement rocks, which were located along the main fault bounding the eastern edge of the Nakdong Trough, had exposures of peridotite or serpentinite. It is possible that the Nakdong Trough was directly adjacent to the Circum‐Hida Tectonic zone before the opening of the Sea of Japan (East Sea).  相似文献   

2.
The Sindong Group forms the lowermost basin‐fill of the Gyeongsang Basin, the largest Cretaceous nonmarine basin located in southeastern Korea, and comprises the Nakdong, Hasandong, and Jinju Formations with decreasing age. The depositional age of the Sindong Group has not yet been determined well and the reported age ranges from the Valanginian to Albian. Detrital zircons from the Sindong Group have been subjected to U–Pb dating using laser ablation inductively coupled plasma mass spectrometry. The Sindong Group contains noticeable amounts of detrital magmatic zircons of Cretaceous age (138–106 Ma), indicative of continuous magmatic activity prior to and during deposition of the Sindong Group. The youngest detrital zircon age of three formations becomes progressively younger stratigraphically: 118 Ma for the Nakdong Formation, 109 Ma for the Hasandong Formation, and 106 Ma for the Jinju Formation. Accordingly, the depositional age of the Sindong Group ranges from the late Aptian to late Albian, which is much younger than previously thought. Lower Cretaceous magmatic activity, which supplied detrital zircons to the Sindong Group, changed its location spatially through time; it occurred in the middle and northern source areas during the early stage, and then switched to the middle to southern source areas during the middle to late stages. This study reports first the Lower Cretaceous magmatic activity from the East Asian continental margin, which results in a narrower magmatic gap (ca 20 m.y.) than previously known.  相似文献   

3.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   

4.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   

5.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   

6.
Abstract Thailand comprises two continental blocks: Sibumasu and Indochina. The clastic rocks of the Triassic Mae Sariang Group are distributed in the Mae Hong Son–Mae Sariang area, north‐west Thailand, which corresponds to the central part of Sibumasu. The clastic rocks yield abundant detrital chromian spinels, indicating a source of ultramafic/mafic rocks. The chemistry of the detrital chromian spinels suggests that they were derived from three different rock types: ocean‐floor peridotite, chromitite and intraplate basalt, and that ophiolitic rocks were exposed in the area, where there are no outcrops of them at present. Exposition of an ophiolitic complex denotes a suture zone or other tectonic boundary. The discovery of chromian spinels suggests that the Gondwana–Tethys divide is located along the Mae Yuam Fault zone. Both paleontological and tectonic aspects support this conclusion.  相似文献   

7.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   

8.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

9.
Possible sub-arc origin of podiform chromitites   总被引:6,自引:1,他引:6  
Abstract The sub-arc mantle condition possibly favors the formation of podiform chromitites. The Cr/(Cr + Al) atomic ratio (= Cr#) of their chromian spinel frequently is higher than 0.7, which is comparable with the range for arc-related primitive magmas. This almost excludes the possibility of their sub-oceanic origin, because both oceanic peridotites and MORB have chromian spinel with the Cr# < 0.6. Precipitation of chromitite and associated dunite enhances a relative depletion of high-field strength elements (HFSE) to large-ion lithophile elements (LILE), one of chemical characteristics of arc magmas, for the involved magma. This cannot alter completely, however, the MORB to the arc-type magma, especially for Ti and Zr. The presence of chromitite xenoliths, similar both in texture and in chemistry to podiform chromitites of some ophiolitic complexes, in some Cenozoic alkali basalts from the southwest Japan arc indicates directly that the upper mantle beneath the Japan arcs has chromitites.  相似文献   

10.
Abstract Mostly siliciclastic lacustrine deposits from five stratigraphically different formations (Jinju Formation, Jindong Formation, Geoncheonri and correlative Hwasan Formations and Dadaepo Formation, in ascending order) in the Cretaceous Gyeongsang Basin, Korea, were examined for aspects of lithofacies and pedogenesis to evaluate the relative influence of geological controls on the development of palustrine calcretes (calcretes formed from palustrine deposits). The pedogenic carbonate development of palustrine deposits in the Gyeongsang Supergroup varies from formation to formation. The highest development is in the Dadaepo Formation and the second is in the Jindong Formation. The lowest development of palustrine calcretes is in the Geoncheonri and Hwasan Formations and the Jinju Formation shows intermediate development. The more negative d13C values and the less negative d18O values of the Dadaepo palustrine calcretes confirm greater pedogenic development in the Dadaepo Formation. That the highest development was in the Dadaepo Formation was attributed to it having the smallest lake size, indicating that lake size is critical to palustrine calcrete development in non‐carbonate lakes under semi‐arid climate. In spite of having the largest lake size, the higher development in the Jindong Formation could have resulted from its lowest lake gradient and most arid paleoclimate. The higher development of palustrine calcretes in the Late Cretaceous deposits (Jindong Formation) than the Early Cretaceous deposits (Jinju Formation) reflect overall increase in aridity throughout the period during the deposition of the Gyeongsang Supergroup. Consequently, the diverse development of the palustrine calcretes in the Gyeongsang Supergroup indicates that the lacustrine settings varied in time and space throughout the evolution of the Cretaceous Gyeongsang Basin. Such variation in palustrine calcrete development according to the change in paleoenvironments may provide a basis to interpret the relative paleoenvironmental condition of lacustrine deposits including paleoclimate, lake size and gradient.  相似文献   

11.
Along the east coast of the Andaman Islands, abundant detrital chromian spinels frequently occur in black sands at the confluence of streams meeting the Andaman Sea. The mineral chemistry of these detrital chromian spinels has been used in reconstructing the evolutionary history of the Andaman ophiolite. The chromian spinels show wide variation in compositional parameters such as Cr# [= Cr/(Cr + A1) atomic ratio] (0.13–0.91), Mg# [= Mg/(Mg + Fe2+) atomic ratio] (0.23–0.76), and TiO2 (<0.05–3.9 wt%). The YFe3+[= 100Fe3+/(Cr + A1 + Fe3+) atomic ratio] is remarkably low (usually <10 except for south Andaman). The ranges of chemical composition of chromian spinels are different in each locality. The spinel compositions show very depleted signatures over the entire island, which suggests that all massifs in the Andaman ophiolite were affected under island‐arc conditions. Although the degree of depletion varies in different parts of the island, a directional change in composition of the detrital chromian spinels from south to north is evident. Towards the north the detrital chromian spinels point to less‐depleted source rocks in contrast to relatively more depleted towards the south. The possibilities to explain this directional change are critically discussed in the context of the evolution of Andaman ophiolite.  相似文献   

12.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

13.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

14.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

15.
本文根据温州北部地区的火山一沉积岩地层的剖面,进行了岩石地层、生物地层、年代地层的综合研究和区域对比,针对以往1:25万、1:20万和1:5万区域地质调查的划分和归属提出了新的看法。浙东南下白垩统火山一沉积岩分为上、下两个岩系,下岩系称磨石山群,上岩系称永康群。研究认为,温州北部地区的火山-沉积岩系主体为下白垩统下岩系的磨石山群,并非均为上岩系的永康群馆头组;在永嘉枫林、澄田一带的火山-沉积岩地层分别属于磨石山群大爽组和茶湾组,而桥下一带的沉积岩地层则属于永康群馆头组。  相似文献   

16.
Yong I. Lee 《Island Arc》2008,17(4):458-470
The currently available paleogeographic maps of the East Asia continental margin during the Mesozoic have been recast in the light of recent research results on sediments distributed in Korea and Japan. Both the Korean peninsula and the Inner zone of Southwest Japan exchanged sediment supply during the Middle to Late Mesozoic, suggestive of a close paleogeographic relationship between the two countries at the active continental margin setting. During the latest Middle to earliest Late Jurassic the Mino–Tamba trench was developed along the southeastern Korean peninsula, from which trench‐fill sediments were sourced and to which an accretionary complex was accreted. Lower Cretaceous quartz‐arenite clasts of the Tetori Group in the Hida Marginal Belt of Southwest Japan were derived from pre‐Mesozoic quartz‐arenite strata distributed in the southern central and east central Korean peninsula, suggesting that the Tetori Basin was located close to the central eastern part of the Korean peninsula at the time of deposition of quartz‐arenite clasts, contrary to conventional thought of far distance between the two areas based on paleomagnetic data. During the early Late Cretaceous radiolaria‐bearing chert pebbles and sands in the northern part of the non‐marine Gyeongsang Basin distributed in the southeastern Korean peninsula were derived from the uplifted Mino–Tamba accretionary complex distributed in southwest Japan, suggesting that the Mino–Tamba terrane was land‐connected with the eastern Korean peninsula. These new findings suggest that in contrast to conventional thought, the collage of tectonic blocks in Southwest Japan has assembled in post‐early Late Cretaceous time.  相似文献   

17.
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka.  相似文献   

18.
Abstract Peridotite xenoliths from the subarc mantle, which have been rarely documented, are described from Iraya volcano of the Luzon arc, the Philippines, and are discussed in the context of wedge-mantle processes. They are mainly harzburgite, with subordinate dunite, and show various textures from weakly porphyroclastic (C-type) to extremely fine-grained equigranular (F-type). Textural characteristics indicate a transition from the former to the latter by recrystallization. The F-type peridotite has inclusion-rich fine-grained olivine and radially aggregated orthopyroxene, being quite different in texture from ordinary mantle-derived peridotites previously documented. Despite their strong textural contrast, the two types do not show any systematic difference in modal composition. The harzburgite of C-type has ordinary mantle peridotite mineralogy; olivine is mostly Fo91–92 and chromian spinel mostly has Cr#s (= Cr/[Cr + Al] atomic ratios) from 0.3 to 0.6. Olivine is slightly more Fe-rich (Fo89–91) and spinel is more enriched in Cr (the Cr#, 0.4–0.8) and Fe3+ in F-type peridotites than in C-type harzburgite. Orthopyroxene in F-type peridotites is relatively low in CaO (<1 wt%), Al2O3 (<2 wt%) and Cr2O3 (<0.4 wt%). The F-type peridotite was possibly formed from the C-type one by recrystallization including local dissolution and precipitation of orthopyroxene assisted by fluid (or melt) of subduction origin. Textural characteristics, however, indicate a deserpentinization origin from abyssal serpentinite of which protolith was a C-type peridotite. In this scenario the initial abyssal serpentinite was possibly dehydrated due to an initiation of magmatic activity beneath an incipient oceanic arc like Batan Island. The F-type peridotite is characteristic of the upper mantle of island arc, especially of incipient arc.  相似文献   

19.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

20.
Ophiolites with different magmatic characteristics are closely associated in space with one another in northern Pindos. Some have affinities with ocean-floor magmas (Group I), and others represent melts which are frequently strongly depleted in «incompatible» elements (Group II). Group I is composed of cumulates, dolerites and lavas, whereas Group II occurs mainly as pillows and dykes, and postdates Group I. The two groups have different geochemical, mineralogical and petrographic features. They exhibit different Ti, Cr, Ni, Y, Zr, P, Si and Mg contents, and clinopyroxenes and spinels of Group I have higher Ti/Al and Ti/Mn ratios, and lower Cr/(Cr + Al) values respectively than those of Group II. Many rocks of Group II are chemically similar to boninites and associated rocks as well as to low-Ti basalts from other areas and ophiolitic complexes. It is concluded that geochemical and mineralogical data alone do not allow a definitive answer about the original tectonic setting of the investigated rocks, although a genesis above a subduction zone seems to be plausible hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号