首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   

2.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   

3.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   

4.
Concentrations of dissolved sulfate and sulfur isotopic ratios of dissolved sulfide in surface sediments of the Peru shelf and upper slope indicate that the sediments can be divided into two depth intervals based on the dominant biogeochemical reactions. Although rates of bacterial sulfate reduction are high throughout Peru surface sediments, chemistry of the upper interval (<10–20 cm) is dominated by chemoautotrophic oxidation of dissolved sulfide and elemental sulfur, while the lower interval (>10–20 cm) is dominated by dissimilatory sulfate reduction. In three of the four cores examined here, pore water concentrations of sulfate in the top 10 cm of the sediment are significantly higher than those of the overlying seawater. Peak sulfate concentrations in pore water (37–53 mmol/l) are ∼1.3–1.9 times that of seawater sulfate and are located 1–6 cm below the sediment/water interface (SWI). The excess sulfate is most likely produced by oxidation of elemental sulfur coupled to reduction of nitrate, a reaction mediated by a facultative chemoautotrophic sulfide-oxidizing bacterium, Thioploca spp. Numerical simulations demonstrate that the anomalously high concentrations of dissolved sulfate can be produced by steady-state or non-steady-state processes involving high rates of bacterial oxidation of elemental sulfur. If bacterial sulfur oxidation is a transient phenomenon, then it is probably triggered by seasonal or El Niño-induced changes in water-column chemistry of the Peru undercurrent.  相似文献   

5.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

6.
为了解潮间带沉积物中铁和硫的氧化还原过程以及上覆水缺氧等对磷再活化和释放的影响,选择厦门翔安海岸带,应用原位、高分辨采样技术,对沉积物、孔隙水以及上覆水进行为期1 a的连续采样和监测。结果表明:上覆海水缺氧和磷含量超标较为严重,二者在多数月份分别低于2 mg/L和高于0.06 mg/L;在垂向剖面上,孔隙水中溶解活性磷含量同溶解铁含量变化规律一致,而薄膜扩散梯度技术有效态磷和有效态硫含量在局部硫高值区分布一致,表明磷的钝化和再活化主要受控于铁,局部受控于硫的氧化还原过程;在季度变化上,孔隙水中溶解活性磷同上覆水中溶解活性磷含量比较一致,归因于缺氧的沉积环境有利于溶解活性磷的跨界面交换,而多种环境因素的叠加,影响着溶解活性磷和膜扩散梯度技术有效态磷的时空变化;表层孔隙水中磷含量梯度不显著,即磷的释放风险不大,但环境因素的变化极易触发内源磷的释放。  相似文献   

7.
Abstract

Chemical parameters (pH, Eh, carbon, Kjeldahl nitrogen, total phosphorus, 0.5M H2SO4‐extractable phosphorus, organic phosphorus, and water‐soluble phosphorus) were measured in the surface layers of sediments collected from various depths in Lakes Rotowhero, Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu, Okataina, and. Rotoma during October 1972. The sediments of the productive geothermal lake, Rotowhero, were markedly different from those of the cold‐water lakes: they had relatively low pH values, high carbon (mean 8.5%) and organic phosphorus (mean 4160 μg.g?1) concentrations, and very high total phosphorus concentrations (mean 4770 μg.g?1), probably as a result of enrichment by hot springs.

The mean concentrations in the sediments of the cold‐water lakes were carbon 3.2–7.9%, Kjeldahl nitrogen 3380–8310 μg.g?1 and phosphorus 690–1780 μg.g?1. These concentrations are within the ranges for New Zealand terrestrial topsoils, but the lake sediments appear enriched in phosphorus relative to local topsoils. Total carbon, nitrogen, and phosphorus concentrations of sediments tended to be highest in the eutrophic lakes (Okaro, Ngapouri) although the deep oligotrophic lakes (Okataina, Rotoma) had relatively high total phosphorus concentrations (means 1400, 1510 μg.g?1). Overall, the carbon, nitrogen, and phosphorus concentrations of the sediments showed little relationship to the trophic state of the lake.

Organic phosphorus concentrations of the surface layers of sediments were similar in all the cold‐water lakes (mean 319 μg.g?1). The proportion of the total phosphorus apparently ‘fixed’ in mineral material was minimal (0–1%) in sediments from the eutrophic and mesotrophic lakes, but in the oligotrophic lakes was similar to that in New Zealand topsoils (9–14%). Reducing conditions may cause solution of a high proportion of the ‘fixed’ phosphorus in the eutrophic lakes.

The water‐soluble phosphorus concentrations in the sediments of the five shallow cold‐water lakes (Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu) correlated positively with trophic state and with concentrations of dissolved phosphorus in the lake waters.

Carbon, nitrogen, and phosphorus concentrations in the sediments tended to vary with overlying water depth. This should be considered when comparisons are made between lakes.  相似文献   

8.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

9.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

10.
《Marine Chemistry》2001,76(3):155-174
Laboratory experiments were conducted to evaluate the net exchange of organic carbon (OC) between sediments and overlying water during episodes of resuspension. Surface sediment samples collected from six locations within the Hudson River Estuary and the Inner New York Bight were resuspended in their respective bottom waters for periods ranging from 30 s to 2 h. After resuspension, dissolved organic carbon (DOC) concentration generally reached levels greater than that predicted by conservative mixing of pore water and bottom water, indicating net release of OC from the sediment particles. The amount of OC released during the 1-h extractions comprised ≤0.1% of the total sediment pool, but correlated positively (R2=0.65, P<0.052) with the amount of particulate organic carbon (POC) found in the high-density fraction of the sediment matrix. This suggests that the mineral-bound fraction of sedimentary OC was the major source for the excess DOC released into solution, and that across various sedimentary environments, only a small (but fairly constant) fraction of the total sedimentary POC may be poised for rapid transfer to the water column.  相似文献   

11.
The number of bacteria in sediments, interstitial water and overlying tidal water of an oligohaline marsh system are about 109, 106 and 106 cells cm?3, respectively. Average cell size in the overlying water (about 0·06 μm3), is much smaller than that in sediments and interstitial water (about 0·18 μm3). Most bacterial cells in sediments are bound to sediment particles and less than 1% of the cells were displaced by percolating water through sediment columns. Concentration of bacteria in flooding tidal waters is generally higher than that in ebbing waters. Movement of bacterial biomass does not appear to be a significant mechanism of particulate organic transport in marsh sediments and marsh sediments do not appear to be a source of suspended bacteria for estuaries.  相似文献   

12.
Spatial variations in the distribution and fluxes of dissolved oxygen and sulfide in bottom sediments of Omega and Sevastopol bays have been studied. The results of analysis reveal that the distribution of dissolved oxygen and sulfide in pore water depends mostly on seasonal variations in the oxygen concentration in bottom water, grain size, the organic carbon content in bottom sediments, and, additionally for Sevastopol Bay, the iron content. The oxygen flux at the bottom of Sevastopol Bay is 20 times larger in winter–spring compared to that of Omega Bay. Anaerobic conditions in Sevastopol Bay sediments are observed much closer to the surface, with their subsequent development in bottom water.  相似文献   

13.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   

14.
In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.  相似文献   

15.
Pore water, sediment and microbiological samples were collected from two areas in the Gulf of Maine. The Jeffreys Basin sediments had low organic carbon and low reduced sulfur values; the quality of their pore water indicated that nitrification and subsequent denitrification were major biogeochemical processes occurring in the upper 115 cm. Sediments from the Wilkinson Basin had higher values of organic carbon and higher reduced sulfur and total plate-count bacteria. These data indicate that the major biogeochemical processes occurring in these sediments are denitrification followed by sulfate reduction. The differences in the rates of these microbially mediated processes can be related to differences in sedimentation rates at the two sites.  相似文献   

16.
对胶州湾底层水溶解氧、总氮、总磷、溶解无机氮、活性磷酸盐、铁及孔隙水中溶解无机氮、磷酸盐、铁和沉积物粒度、有机碳进行了分析。结果显示除铵氮外,孔隙水浓度明显高于底层水中浓度,其中硝酸氮、亚硝酸氮、活性磷酸盐、铁在孔隙水中的浓度分别为在底层水中浓度的17.8、9.3、12.5、7.7倍,暗示孔隙水中的物质可能向上覆水体扩散。在横向上,底层水及孔隙水中硝酸氮、亚硝酸氮、铵氮、活性磷酸盐都呈东岸高西岸低的分布规律,在西南部出现低值。Fe在底层水及孔隙水中的分布规律为东低西高,然而在沉积物中则与此正好相反。氮、磷、铁主要补给源有河流输入、工业生活污染排放、海洋生物自身分解以及孔隙水的释放。影响氮、磷、铁分布的主要因素为物源、河流输入及水动力条件,同时受到沉积物粒度的制约。相关分析显示,溶解氧、有机碳、铁对水体中磷及氮的分布具有某种制约作用。  相似文献   

17.
The influence of bioturbation on certain aspects of the biogeochemistry of sulfur and iron was examined in shallow-water sediments of Great Bay Estuary, New Hampshire. A bioturbated (JEL) and non-bioturbated (SQUAM) site were compared. Annual sulfate reduction measured with 35S, was 4·5 times more rapid at JEL. A significant portion of this difference was attributed to rapid rates which occurred throughout the upper 12 cm of sediment at JEL due to infaunal reworking activities. Sulfate reduction decreased rapidly with depth at SQUAM. FeS in the upper 2 cm at JEL increased in concentration from 3 to 45 μmol ml−1 from early May to late July while only increasing from 3 to 8 μmol ml−1 at SQUAM. Infaunal irrigation and reworking activities caused rapid and continous subsurface cycling of iron and sulfur at JEL. This maintained dissolved iron concentrations at 160–170 μM throughout the summer despite rapid sulfide production. Therefore, dissolved sulfide never accumulated in JEL pore waters. Although dissolved organic carbon (DOC) was generated during sulfate reduction, bioturbation during summer caused a net removal of DOC from JEL pore waters. Sulfate reduction rates, decomposition stoichiometry and nutrient concentrations were used to calculate turnover times of nutrients in pore waters. Nutrient turnover varied temporally and increased three-to five-fold during bioturbation. A secondary maximum in the abundance of recoverable sulfate-reducing bacteria occurred at 10 cm in JEL sediments only during periods of active bioturbation, demonstrating the influence of macrofaunal activities on bacterial distributions.  相似文献   

18.
The objectives of this study were to investigate the seasonality, abundance, sources and bioreactivity of organic matter in the water column of the western Arctic Ocean. The concentrations of particulate and dissolved amino acids and amino sugars, as well as bulk properties of particulate and dissolved organic matter (DOM), were measured in shelf, slope and basin waters collected during the spring and summer of 2002. Particulate organic matter concentrations in shelf waters increased by a factor of 10 between spring and summer. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations exhibited only minor seasonal variations, whereas dissolved amino acid concentrations doubled between spring and summer, and dissolved amino sugars increased by 31% in shelf waters of the Chukchi and Beaufort Seas. Concentrations of DOC did not exhibit a significant seasonal change in surface waters of the Canada Basin, but dissolved amino acid concentrations increased by 45% between spring and summer. No significant seasonal differences were detected in the concentration or composition of DOM in waters below 100 m in depth. Concentrations of particulate and dissolved amino acids and amino sugars were strongly correlated with chlorophyll-a, indicating a plankton source of freshly produced organic matter. The amino acid and amino sugar compositions of freshly produced DOM indicated that a large portion of this material is bioavailable. While freshly produced DOM was found to be relatively bioreactive, preformed DOM in the Arctic appears to be less bioreactive but similar in degradation state to average DOM in the Atlantic and Pacific. These data demonstrate substantial summer production of POM and DOM on the Chukchi and Beaufort shelves that is available for utilization in shelf waters and export to the Canada Basin.  相似文献   

19.
本文建立了半透膜渗透装置(semi-permeable membrane device,SPMD)富集-超声萃取-凝胶渗透色谱净化-气相色谱法测定沉积物间隙水中多氯联苯(PCBs)的方法。比较了有机溶剂透析法与超声萃取法从膜袋内提取PCBs的回收率,发现超声萃取法在节省时间和溶剂方面有明显优势。应用凝胶渗透色谱分离与净化SPMD提取物,收集11—17min的流出液能达到最佳分离效果。基于此方法测定了大连湾沉积物间隙水中自由溶解态PCBs的含量(C_(W-SPMD)),同时又分析了沉积物中PCBs的总量(C_(SED))、间隙水中PCBs的含量(有机碳含量校正法,C_(W-SED))和间隙水中PCBs的总含量(离心法,C_(PW))。结果表明,C_(PW)值显著高于C_(W-SED)和C_(W-SPMD)值。因此,考虑到生物可利用性,无论采用沉积物中或者间隙水中的PCBs总量进行污染物生态风险评价均会造成风险被高估,建议采用间隙水中可溶解态含量。  相似文献   

20.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号