首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fault‐bend folding is the most commonly used kinematic mechanism to interpret the architecture and evolution of thrust‐related anticlines in thrust wedges. However, its basic requirement of an instantaneous propagation of the entire fault before hangingwall deformation, limits its kinematic effectiveness. To overcome this limitation, we used the interdependence between fold shape and fault slip vs. propagation rate (S/P ratio) implemented in double‐edge fault‐propagation folding. We show that very small S/P values produce fault‐propagation anticlines that, when transported forelandward along an upper décollement layer, closely resemble fault‐bend anticlines. Accordingly, if small geometric discrepancies between the two solutions are accepted, transported double‐edge fault‐propagation provides an effective kinematic alternative to fault‐bend folding. Even at very low S/P values, it in fact predicts a fast but finite propagation rate of the fault. We thus propose that double‐edge fault‐propagation folding provides a broadly applicable model of fault‐related folding that includes fault‐bend folding as an end‐member kinematic solution. Terra Nova, 18, 270–275, 2006  相似文献   

2.
Fold terminations are key features in the study of compressional fault-related folds. Such terminations could be due to loss of displacement on the thrust fault or/and forming a lateral or oblique ramp. Thus, high-quality seismic data would help unambiguously define which mechanism should be responsible for the termination of a given fault-related fold. The Qiongxi and Qiongxinan structures in the Sichuan Basin, China are examples of natural fault-propagation folds that possess a northern termination and a structural saddle between them. The folds/fault geometry and along-strike displacement variations are constrained by the industry 3-D seismic volume. We interpret that the plunge of the fold near the northern termination and the structural saddle are due to the loss of displacement along strike. The fault geometry associated with the northern termination changes from a flat-ramp at the crest of the Qiongxinan structure, where displacement is the greatest, to simply a ramp near the northern tip of the Qiongxi structure, without forming a lateral or oblique ramp. In this study, we also use the drainage pattern, embryonic structure preserved in the crest of the Qiongxinan structure and the assumption that displacement along a fault is proportional to the duration of thrusting to propose a model for the lateral propagation of the Qiongxinan and Qiongxi structures. Specifically, we suggest that the structure first initiated as an isolated fault ramp within brittle units. With increased shortening, the fault grows to link with lower detachments in weaker shale units to create a hybridized fault-propagation fold. Our model suggests a possible explanation for the lateral propagation history of the Qiongxinan and Qiongxi structures, and also provides an alternative approach to confirming the activity of the previous Pingluoba structure in the southwestern Sichuan Basin in the late Cenozoic.  相似文献   

3.
丘里塔格背斜带是库车再生前陆褶皱逆冲带的前锋构造带。依据各段不同的构造特点,沿走向自东向西可分为东丘里塔格段、库车塔吾段、南、北丘里塔格段和亚克里克—阿瓦特段。其中东丘里塔格段和库车塔吾段以浅部膝折褶皱或断层传播褶皱与深部的断层转折褶皱相叠置为特点。而南、北丘里塔格段和亚克里克—阿瓦特段则以发育膝折褶皱、断层传播褶皱、断层转折褶皱以及相伴生的纵向走滑逆冲断层为特点。该构造带有良好的油气前景,寻找深部完整的断层转折褶皱背斜圈闭以及纵向走滑逆冲断层下盘的圈闭是重要的勘探方向。  相似文献   

4.
内蒙古中部大青山地区推覆构造系统及与断层相关的褶皱   总被引:6,自引:0,他引:6  
对内蒙古大青山地区西部推覆构造及与断层相关的褶皱的研究表明,大青山构造系统自南向北分为根部逆冲推覆岩席带、中部斜歪倒转褶皱一逆冲断层带和前缘断层相关褶皱带,变形强度由根带向前缘带逐渐减弱,前缘带发育典型的断层转折褶皱和断层传播褶皱。推覆构造运动方向由SSE向NNW推覆,主要形成于中侏罗世末期,推覆距离达10~20km,其形成可能与鄂霍次克洋在燕山期的闭合有关。  相似文献   

5.

An overturned angular fold in the Currabubula Formation at Tulcumba Ridge has a north‐south axial trace exposed along the western side of this ridge. The geometry and position of this fold adjacent to the Mooki Thrust is consistent with its formation as a fault‐propagation fold involving a thrust step‐up angle of ~ 30° from a décollement. Overturned strata also occur adjacent to the Mooki Thrust near the Rocky Creek Syncline to the north and to the south on Gunnan Ridge and in the Werrie Syncline. Overturning of strata in these areas may be the result of fault‐propagation folding. It is suggested that folding in the Tamworth Belt involves thin‐skinned deformation that is dominantly fault‐related.  相似文献   

6.
张猛  贾东  王毛毛  李志刚  李一泉 《地质论评》2013,59(6):1207-1217
斜向逆冲作用在自然界普遍存在,研究斜向逆冲断层相关褶皱的构造几何学特征,识别断层相关褶皱是否存在斜向逆冲有重要意义。文章采用Trishear 4.5、Gocad以及Trishear3D软件构建一系列不同滑移量的断层转折褶皱和断层传播褶皱的二维正演剖面,通过连接一系列不同排列方式的二维剖面建立了三种不同逆冲滑移方向的断层转折褶皱和断层传播褶皱的假三维模型,通过不同假三维模型的比较分析来探讨斜向逆冲断层相关褶皱的构造几何学特征。研究发现,斜向逆冲断层相关褶皱区别于正向逆冲断层相关褶皱的特征主要有两点:① 正向逆冲断层相关褶皱层面等高线图上的最高点与后翼等高线中点的连线以及水平切面上的核心点与后翼中点的连线方向均与断层走向垂直,而斜向逆冲断层相关褶皱的最高点以及核心点与后翼中点的连线方向均与断层走向斜交,并且最高点与后翼等高线中点的连线方向或者核心点与后翼中点的连线方向均与逆冲滑移方向一致;② 在褶皱平行断层走向纵剖面上,正向逆冲断层相关褶皱各个层面最高点的连线是直立的,而斜向逆冲断层相关褶皱各个层面最高点的连线发生倾斜。通过这两个特征可以判别褶皱是否存在斜向逆冲以及逆冲的方向。将模型分析结果运用到四川盆地西南部三维地震勘探资料所覆盖的邛西背斜和大兴西背斜的实例中。研究结果表明,两个背斜均存在右旋斜向逆冲,逆冲方向与各自断层走向的夹角均为70°左右,邛西背斜和大兴西背斜的逆冲方向分别是NE79°和NE77°左右,这与龙门山南段晚上新世以来的主应力方向以及反演的汶川地震最大主应力方向一致。  相似文献   

7.
The Ramshorn Peak area of the Idaho-Wyoming thrust belt lies in the toe of the Prospect thrust sheet along the eastern margin of the exposed part of the thrust belt. The terrain is folded with axes trending N-S and wavelengths ranging from 3 to 4.3 km. Thrusts occur exclusively along the eastern part of the map area where the toe of the Prospect thrust sheet is thinnest. The easternmost thrusts are backthrusts.Monoclinally folded rocks are thrust on less deformed rocks south of Ramshorn Peak. This fold and fault complex is interpreted to have formed by thrusting over a large oblique and small forward step. The oblique step is responsible for the formation of the monocline in the hanging wall of the thrust. All faults and associated folds are rotated by subsequent buckle folding.Second- and third-order folds (folds at the scale of the Ramshorn Peak fold and fault complex and smaller) appear to be isolated features associated with faults (fault-related folds rather than buckle folds) because they are not distributed throughout the map area. These folds were probably initiated by translation and adhesive drag. The early folding was terminated by large translation over a stepped thrust surface which caused additional folding as the hanging wall rocks conformed to the irregular shape of the footwall. The Rich model is utilized to explain the Ramshorn Peak complex because the fold is of monoclinal form and is an isolated feature rather than part of a buckle fold wave-train.  相似文献   

8.
山前冲断构造带研究的新进展   总被引:4,自引:1,他引:3  
罗金海  何登发 《地质论评》1999,45(4):382-389
本文通过对山前冲断构造带研究中的几个新思路和新方法的简要介绍表明,山前冲断构造带的前锋带普遍发育与各种类型断层相关褶皱或(和)三角带构造。冲断断面的多次转折将使上盘地层中的褶皱复杂化,其复杂性可以用与断面转折点相关的褶皱轴面来描述。在有基底参与的冲断构造带中,尽管上盘与下盘有较大的构造高差,但盖层完全可能是连续的。生长地层不仅可以用于确定构造发育的时间,还可以用于定量地计算褶皱生长速率和冲断速率。  相似文献   

9.
The Tafilalt is one of a number of generally unexplored sub‐basins in the eastern Anti‐Atlas of Morocco, all of which probably underwent a similar tectono‐stratigraphic evolution during the Palaeozoic Era. Analysis of over 1000 km of 2‐D seismic reflection profiles, with the interpretation of ten regional seismic sections and five isopach and isobath maps, suggests a multi‐phase deformation history for the Palaeozoic‐aged Tafilalt sub‐basins. Extensional phases were probably initiated in the Cambrian, followed by uniform thermal subsidence up to at least the end of the Silurian. Major extension and subsidence did not begin prior to Middle/Upper Devonian times. Extensional movements on the major faults bounding the basin to the north and to the south took place in synchronisation with Upper Devonian sedimentation, which provides the thickest part of the sedimentary sequence in the basin. The onset of the compressional phase in Carboniferous times is indicated by reflectors in the Carboniferous sequence progressively onlapping onto the Upper Devonian sequence. This period of compression developed folds and faults in the Upper Palaeozoic‐aged strata, producing a structural style characteristic of thin‐skinned fold and thrust belts. The Late Palaeozoic units are detached over a regional décollement with a northward tectonic vergence. The folds have been formed by the process of fault‐propagation folding related to the thrust imbricates that ramp up‐section from the décollement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Fault-propagation folding is an important yet seldom recognised structural style within sediments affected by glacier-induced deformation. Fault-propagation folds develop in the hanging wall of low angle thrust faults and compensate part of the slip along the fault. Field examples are recognised across northern Europe, in glaciotectonic complexes of north Germany, Wales and the Isle of Man. The recognition of the fault-propagation fold mechanism in glaciotectonic deformation is important because resultant structures are related to exactly the same phase of deformation (i.e. the same phase of ice advance), and thus play a critical role in analyses of the temporal and spatial evolution of glacier-induced deformation. Some field examples show monoclinal geometries that are in good agreement with predictions of trishear kinematic theory. The trishear approach is appropriate to model these structures because the structures analysed in the field and simulated below show characteristics that are compatible with fault-propagation folds that were produced by trishear kinematics. The curved forelimb and the monocline geometry of the fault-propagation folds fit to the trishear model. The occurrence of footwall synclines is also in good agreement with trishear kinematics. These synclines show the typical thickening of the strata in the hinge. With respect to the modelling output, most important factors for the structural evolution of the fault-propagation folds is the ramp angle of the thrust, the position of the tip line and the propagation-to-slip ratio along the fault. This fits to observations made by previous studies at large scale fault-propagation folds in fold-and-thrust belts.  相似文献   

11.
玛东褶皱-冲断带是世界上保存最好的早古生代褶皱冲断带之一,也是塔里木油气勘探的重点区域之一。褶皱-冲 断带浅部构造由于遭受强烈剥蚀,为玛东褶皱-冲断带的构造样式和变形机制研究带来巨大的挑战。断层相关褶皱理论定 量化建立了断层形态和褶皱形态几何学和运动学的关系,是一种有效的利用断层形态来推测褶皱形态的方法,为恢复玛东 地区被剥蚀区域的构造形态提供了可能。文中详细介绍了断层转折褶皱和断层传播褶皱的几何学和运动学特征,并将其应 用于玛东地区的典型构造中,建立2 种玛东地区构造变形模式。最后结合工业地震剖面和钻井资料,认为玛东地区的主要 构造样式是断层转折褶皱, 并分析了构造样式对油气圈闭的影响。  相似文献   

12.
塔里木盆地西南缘构造样式及其主导因素   总被引:3,自引:1,他引:2       下载免费PDF全文
张玮  漆家福  李勇 《地质科学》2011,46(3):723-732
塔里木盆地西南缘是西昆仑山前北北西—近东西向的构造变形带.具有南北3带、东西3段、上下3层的展布特点.各带、段和层以基底卷入的冲断构造和盖层滑脱的断层相关褶皱为主,包括:破冲褶皱、断层扩展褶皱、断层滑脱褶皱和断层弯曲褶皱等.通过识别地震剖面上不整合面和同构造沉积现象,认为构造变形时间在上新世—第四纪;第一排背斜带形成于...  相似文献   

13.
The Gran Sasso chain in Central Italy is made up of an imbricate stack of eight thrust sheets, which were emplaced over the Upper Miocene—Lower Pliocene Laga Flysch. The thrust sheets are numbered from 1 to 8 in order of their decreasing elevation in the tectonic stack, and their basal thrusts are numbered from T1 to T8, accordingly. On the basis of their different deformation features, the major thrust faults fall into three groups: (1) thrust faults marked by thick belts of incoherent gouges and breccia zones (T1, T2, T3); (2) thrust faults characterized by a sharp plane which truncates folds that had developed in the footwall rocks (T5, T6); and (3) thrust faults truncating folds developed in both the hangingwall and footwall units, and bordered by foliated fault rocks (T7). The deformation features observed for the different faults seem to vary because of two combined factors: (1) lithologic changes in the footwall and hangingwall units separated by the thrust faults; and (2) increasing amounts of deformation in the deepest portions of the imbricate stack. The upper thrust sheets (from 1 to 6) are characterized by massive calcareous and dolomitic rocks, they maintain a homoclinal setting and are truncated up-section by the cataclastic thrust faults. The lowermost thrust sheets (7 and 8) are characterized by a multilayer with competence contrasts, which undergoes shear-induced folding prior to the final emplacement of the thrust sheets. Bedding and axial planes of folds rotate progressively towards the T5, T6, T7 and T8 thrust boundaries, and are subsequently truncated by propagation of the brittle thrust faults. The maximum deformation is observed along the T7 thrust fault, consistent with horizontal displacement that increases progressively from the uppermost to the lowermost thrust sheet in the tectonic stack. The axial planes of the folds developed in the hangingwall and footwall units are parallel to the T7 thrust fault, and foliated fault rocks have developed. Field data and petrographic analysis indicate that cleavage fabrics in the fault rocks form by a combination of cataclasis, cataclastic flow and pressure-solution slip, associated with pervasive shearing along subtly distributed slip zones parallel to the T7 thrust fault. The development of such fabrics at upper crustal levels creates easy-slip conditions in progressively thinner domains, which are regions of localized flow during the thrust sheet emplacement.  相似文献   

14.
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.  相似文献   

15.
Hand-specimen and outcrop scale examples of folds are analyzed here to identify the characteristic signatures of fold-accommodation faults. We describe and analyze the geometric and kinematic relationships between folds and their associated faults in detail including the structural position and spatial distribution of faults within a fold, the displacement distribution along the faults by applying separation–distance plots for the outcrop scale examples, and the change of cut-off angle when the fault cut across folded layers. A comparison between fold-accommodation faults and fault related folds based on their separation–distribution plots and the problem of time sequence between faulting and folding are discussed in order to distinguish fold-accommodation faults from the reverse faults geometrically and kinematically similar to them. The analysis results show that fold-accommodation faults originate and terminate within a fold and usually do not modify the geometry of the fold because of their limited displacement. The out-of-syncline thrust has a diagnostically negative slope (separation value decreasing away from the upper fault tip) in the separation–distance graph. The change of cut-off angle and the spatial distribution of faults display a close relationship with the axial surface of the fold. Our analyses show that fold-accommodation faults are kinematically consistent with the flexural slip of the fold. The interbedded strata with competence contrast facilitate formation of fold-accommodation faults. These characteristic signatures are concluded as a set of primary identification criteria for fold-accommodation faults.  相似文献   

16.
基于地震剖面的精细地质解释,识别出塔里木盆地巴楚隆起亚松迪断裂带及邻区三期冲断褶皱构造,并建立了其几何学模型。第一期活动的为沿中寒武统膏盐层滑脱的巴什托断裂,该断裂走向为NWW,形成于二叠纪之后、古近纪之前;第二期为基底卷入型的色力布亚断裂,该断裂走向为NNW,形成于晚中新世;第三期为分别沿中寒武统和古近系膏盐层滑脱的亚松迪深、浅层断裂,这两条断裂走向均为NW,形成于更新世-全新世。平面上,亚松迪断裂的发育位置受控于古近系膏盐层的分布范围。剖面上,与先存的巴什托断裂和色力布亚断裂的复合发育造成了亚松迪断裂带东、中、西三段不同的构造样式:东段发育断层传播褶皱(上)与突破型滑脱褶皱(下);中段发育断层传播褶皱(上)、突破型滑脱褶皱(中)和基底卷入构造(下);西段则发育滑脱褶皱(上)与断层转折褶皱(下),该段滑脱褶皱为亚松迪浅层断裂的西端点。最后,我们利用计算机数值模拟的方法对这三种冲断褶皱模型进行了验证。  相似文献   

17.
西天山东段的构造变形分为三个构造层次。即:深部构造层次、中部构造层次和浅部构造层次。深部构造层次以韧性剪切,塑性压扁,顶界劈理发育为特征,应变强度平均为1.03.压缩量平均为63%。中部构造层次以等厚褶皱,同斜倒转褶皱和逆冲推覆断层为主的脆韧性变形为特征,断层总体为叠瓦扇状逆冲断层系。该层次的应变强度平均为0.67,压缩量平均为44%。浅部构造层以宽缓的断层转折褶皱,断层传播褶皱及造山带向盆地仰冲为主的脆性变形为特征,断层伴有大量的水平走滑。该层次的应变强度平均为0.28,压缩量平均为24%。  相似文献   

18.
四川龙门山地区反转构造样式分析及其成因机制探讨   总被引:3,自引:1,他引:2  
反转构造是当今构造地质学研究的新兴热点领域,本文尝试以反转构造和断层相关褶皱理论来探讨龙门山褶皱冲断带及川西前陆盆地中的反转构造样式及其成因。著者在综合前人研究成果的基础上,通过野外地质调查,室内构造分析与建模系统研究了龙门山地区典型的反转构造样式,讨论了龙门山带的反转性质,主干断裂的成因以及反转动力学机制。研究表明,龙门山的发育机制为一斜向正反转过程,区内发育有反转断层转折褶皱、被动陆缘型反转滑脱褶皱、反转断层传播褶皱以及受古生代裂谷控制的反转构造等反转构造类型;反转时期主要为印支期,本区在印支运动之前同时属被动陆缘和裂谷的构造背景;进入印支期后,受扬子陆块、华北陆块、羌塘陆块之间相互碰撞的影响而造山。该过程在本区不同地段表现存在差异,这种差异受控于前期的构造格局以及后期不同方向挤压应力的叠加。四川前陆盆地的发育和该过程有密切的联系,盆地内部具有裂谷构造反转的证据。  相似文献   

19.
库车前陆冲断带秋里塔格构造带水系形态与褶皱生长   总被引:2,自引:0,他引:2  
贺电  李江海 《地质学报》2009,83(8):1074-1082
水系形态能够非常敏感的记录活动构造的演化过程,尤其对于褶皱横向生长的地区,常形成特征的水系形态。库车前陆冲断带发育平行于南天山造山带走向的褶皱带,并形成特征的水系形态。利用遥感影像、卫星照片、以及从数字高程数据中提取的地貌和水系参数,对库车前陆冲断带秋里塔格构造带水系形态进行分析研究,得出库车前陆冲断带褶皱具有横向生长的演化特征,并识别出判别褶皱生长的5个水系形态标志。这些水系形态标志包括:不对称的水域形态,水系受到阻挡发生弯曲、捕获、并流现象,背斜脊部风口的形成以及高度依次降低排列,不对称的冲积扇体,被纵向河流分隔的两侧背斜的水系形态差异。褶皱的横向生长最终导致相互拼接形成更大规模的褶皱带,秋里塔格构造带正是由多条背斜的横向生长,并拼接而成现今延伸~300km的褶皱带。  相似文献   

20.
Sea‐floor topography of deep‐water folds is widely considered to have a major impact on turbidity currents and their depositional systems, but understanding the flow response to such features was limited mainly to conceptual notions inspired by small‐scale laboratory experiments. High‐resolution three‐dimensional numerical experiments can compensate for the lack of natural‐scale flow observations. The present study combines numerical modelling of thrusts with fault‐propagation folds by Trishear3D software with computational fluid dynamics simulations of a natural‐scale unconfined turbidity current by MassFlow‐3D? software. The study reveals the hydraulic and depositional responses of a turbidity current (ca 50 m thick) to typical topographic features that it might encounter in an orthogonal incidence on a sea‐floor deep‐water fold and thrust belt. The supercritical current (ca 10 m sec?1) decelerated and thickened due to the hydraulic jump on the fold backlimb counter‐slope, where a reverse overflow formed through current self‐reflection and a reverse underflow was issued by backward squeezing of a dense near‐bed sediment load. The reverse flows were re‐feeding sediment to the parental current, reducing its waning rate and extending its runout. The low‐efficiency current, carrying sand and silt, outran a downslope distance of >17 km with only modest deposition (<0·2 m) beyond the fold. Most of the flow volume diverted sideways along the backlimb to surround the fold and spread further downslope, with some overspill across the fold and another hydraulic jump at the forelimb toe. In the case of a segmented fold, a large part of the flow went downslope through the segment boundary. Preferential deposition (0·2 to 1·8 m) occurred on the fold backlimb and directly upslope, and on the forelimb slope in the case of a smaller fold. The spatial patterns of sand entrapment revealed by the study may serve as guidelines for assessing the influence of substrate folds on turbiditic sedimentation in a basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号