首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Estimates for the timing of the arrival of Danube sediment to the Black Sea range from Messinian to Pleistocene; the river is currently the largest sediment contributor, supplying 88 MT/yr. We identify two changes in siltstone provenance‐sensitive heavy mineral abundances at DSDP site 380/380A in the southwest Black Sea. Comparison with modern river sediment compositions indicates that siltstones above 571.5 mbsf (metres below sea floor) were supplied by the Danube, while sediments below 651.0 m were sourced by other supply systems. Palaeo‐magnetic, 40Ar/39Ar and biostratigraphic data reveal that the influx of Danube‐supplied sediment to the southwest Black Sea began between 4.36 ± 0.19 Ma and 1 Ma ago (Zanclean–Calabrian). Our results provide an independent time constraint on palaeogeographic reconstructions of the Pannonian and Dacian basins, which acted as upstream sediment sinks, and suggest that significant volumes of Danube‐supplied sediment only started to reach the Black Sea at least 1 Ma after the Messinian Salinity Crisis (5.971–5.33 Ma) had ended.  相似文献   

2.
Astronomical tuning of the Messinian pre‐salt succession in the Levant Basin allows for the first time the reconstruction of a detailed chronology of the Messinian salinity crisis (MSC) events in deep setting and their correlation with marginal records that supports the CIESM ( 2008 ) 3‐stage model. Our main conclusions are (1) MSC events were synchronous across marginal and deep basins, (2) MSC onset in deep basins occurred at 5.97 Ma, (3) only foraminifera‐barren, evaporite‐free shales accumulated in deep settings between 5.97 and 5.60 Ma, (4) deep evaporites (anhydrite and halite) deposition started later, at 5.60 Ma and (5) new and published 87Sr/86Sr data indicate that during all stages, evaporites precipitated from the same water body in all the Mediterranean sub‐basins. The wide synchrony of events and 87Sr/86Sr homogeneity implies inter‐sub‐basin connection during the whole MSC and is not compatible with large sea‐level fall and desiccation of the Mediterranean.  相似文献   

3.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   

4.
Cambrian siliciclastic sequences along the Dead Sea Transform (DST) margin in southern Israel and southern Jordan host both detrital fluorapatite [D‐apatite] and U‐rich authigenic carbonate‐fluorapatite (francolite) [A‐apatite]. D‐apatite and underlying Neoproterozoic basement apatite yield fission‐track (FT) data reflecting Palaeozoic–Mesozoic sedimentary cycles and epeirogenic events, and dispersed (U–Th–Sm)/He (AHe) ages. A‐apatite, which may partially or completely replace D‐apatite, yields an early Miocene FT age suggesting formation by fracturing, hydrothermal fluid ascent and intra‐strata recrystallisation, linked to early DST motion. The DST, separating the African and Arabian plates, records ~105 km of sinistral strike‐slip displacement, but became more transtensional post‐5 Ma. Helium diffusion measurements on A‐apatite are consistent with thermally activated volume diffusion, indicating Tc ~52 to 56 ± 10°C (cooling rate 10°C/Ma). A‐apatite AHe data record Pliocene cooling (~35 to 40°C) during the transtensional phase of movement. This suggests that timing of important milestones in DST motion can be discerned using A‐apatite low‐temperature thermochronology data alone.  相似文献   

5.
Cool‐water carbonate sedimentation has dominated Mediterranean shelves since the Early Pliocene. Skeletal sand and gravel herein consist of remains of heterozoan organisms, which are susceptible to reworking due to weak early cementation in non‐tropical waters. This study documents the Lower Pleistocene carbonate wedge of Favignana Island (Italy), which prograded from a 5   km wide passage between two palaeo‐islands into a perpendicular, 10 to 15   km wide strait between the palaeo‐islands at one side and Sicily at the other during the Emilian highstand (1·6   Ma to 1·1   Ma). The clinoformed carbonate wedge, which is 50   m thick and 6   km long, formed by east/south‐east progradation of a platform on the submarine sill by currents that were funnelled between the two palaeo‐islands. Platform‐slope clinoforms evolved from initial aggradation (thin and low‐angle) into a progradation phase (thick and high‐angle). Both clinoform types are characterized by a bimodal facies stacking pattern defined by sedimentary structures created by: (i) subaqueous dunes associated with dilute subcritical currents; and (ii) upper‐flow‐regime bedforms associated with sediment‐laden supercritical turbidity currents. Focusing of episodic currents on the platform by funnelling between the islands controlled the downstream formation of a sediment body, here named carbonate delta. The carbonate delta interfingers with subaqueous dune deposits formed in the perpendicular strait. This study uses a reconstruction of bedform dynamics to unravel the evolution of this gateway‐related carbonate accumulation.  相似文献   

6.
7.
Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central‐northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold‐rich (65–72 atomic % Au) nature of electrum, as well as the CO2–rich and low salinity nature of fluid inclusions, are consistent with the ‘mesothermal‐type’ gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (–1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite‐series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (δ18Owater = +5.2 to +5.9 %; δDwater = –59 to –67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar–39Ar age dating of a pure alteration sericite sample yields a high‐temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar‐Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K‐Ar ages (145–171 Ma) for the other ‘mesothermal–type’ gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar‐Ar plateau age (around 188 Ma).  相似文献   

8.
We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional interval of the Perales section (Sorbas basin, Spain) and the revision of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re‐calibration allows to state more accurately that: (i) the interval encompassing the MSC‐onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea‐level fall affecting the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC‐onset was preconditioned by the tectonically‐driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa.  相似文献   

9.
The southeastern part of the Democratic Republic of the Congo locally hosts Proterozoic manganese deposits. The deposits of Kisenge-Kamata are the most significant, but manganese ores are also known to occur at Kasekelesa (former Katanga Province) and Mwene-Ditu (former Kasai Province). For the present study, cryptomelane-rich samples from these two localities were dated, using the 40Ar/39Ar step-heating method with a CO2 laser probe. The ages obtained are within a range of c. 77 Myr to c. 2 Myr. Cryptomelane formation took place at c. 76.4 Ma, c. 59.6 Ma, c. 45 Ma, c. 35 Ma, c. 23.8 Ma, c. 15.4 Ma, and c. 13.3 Ma at Kasekelesa, and it occurred at c. 35 Ma, c. 22.4 Ma, c. 15 Ma, c. 5.5–7.2 Ma, c. 3.6 Ma, and c. 2.1–2.3 Ma at Mwene-Ditu. The Campanian age (c. 76.4 Ma) recorded at Kasekelesa is the oldest 40Ar/39Ar age that has up to now been recorded for Mn ores from Africa. It documents the formation of oxidized ore along a Campanian or older erosion surface, which could be part of the ‘African Erosion Surface’. The complete age record suggests that continent-wide tectonics accounts for most of the recognized supergene ore formation episodes, controlled by vertical lithospheric movements that are ultimately responsible for alternating stages of landscape stability and erosion. Tectonics is thus regarded as the first-order control for secondary ore formation in Central Africa, over the last 80 Myr. Climate is a second-order control, because sufficient water supply is needed for supergene enrichment, whereby climatic conditions are recognized to have been favourable during some relatively cold Late Mesozoic and Paleogene periods, as well as during some humid and warm Neogene stages.  相似文献   

10.
Due to a lack of visible tephras in the Dead Sea record, this unique palaeoenvironmental archive is largely unconnected to the well-established Mediterranean tephrostratigraphy. Here we present first results of the ongoing search for cryptotephras in the International Continental Drilling Program (ICDP) sediment core from the deep Dead Sea basin. This study focusses on the Lateglacial (~15–11.4 cal. ka BP), when Lake Lisan – the precursor of the Dead Sea – shrank from its glacial highstand to the Holocene low levels. We developed a glass shard separation protocol and counting procedure that is adapted to the extreme salinity and sediment recycling of the Dead Sea. Cryptotephra is abundant in the Dead Sea record (up to ~100 shards cm-3), but often glasses are physically and/or chemically altered. Six glass samples from five tephra horizons reveal a heterogeneous geochemical composition, with mainly rhyolitic and some trachytic glasses potentially sourced from Italian, Aegean and Anatolian volcanoes. Most shards likely originate from the eastern Anatolian volcanic province and can be correlated using major element analyses with tephra deposits from swarm eruptions of the Süphan Volcano ~13 ka BP and with ashes from Nemrut Volcano, presumably the Lake Van V-16 volcanic layer at ~13.8 ka BP. In addition to glasses that match the TM-10-1 from Lago Grande di Monticchio (15 820±790 cal. a BP) tentatively correlated with the St. Angelo Tuff of Ischia, we further identified a cryptotephra with glass analyses which are chemically identical with those of the PhT1 tephra in the Philippon peat record (13.9–10.5 ka BP), and also a compositional match for the glass analyses of the Santorini Cape Riva Tephra (Y-2 marine tephra, 22 024±642 cal. a BP). These first results demonstrate the great potential of cryptotephrochronology in the Dead Sea record for improving its chronology and connecting the Levantine region to the Mediterranean tephra framework.  相似文献   

11.
Many studies have examined the Japan Sea basalts recovered during Ocean Drilling Program (ODP) Leg127/128. Of these, the 40Ar–39Ar dating undertaken is important in constraining the timing of the formation of the Japan Sea; however, the implications of their results do not appear to be fully appreciated by the geological community. In this paper, I reassess the 40Ar–39Ar age data of the basalts with reference to Nd–Sr isotopic data. The 40Ar–39Ar dating was performed on basalts somewhat enriched in large-ion lithophile elements and recovered from ODP Sites 794, 795 and the lower part of 797, yielding the plateau ages of 21.2–17.7 Ma. These basalts show the Nd–Sr isotopic signature of a moderately depleted mantle source (εNd: 0.6–6.9). In contrast, the basalts from the upper part of Site 797 have yet to be dated due to their low K content, although their Nd isotopic compositions are similar to that of MORB (εNd: 8.4–10.4). By analogy to the secular Nd–Sr isotopic trends reported for Sikhote-Alin and northeast Japan, the age of the upper basalts at Site 797 may be inferred to be younger than the lower basalts, probably around 16 Ma. The Nd–Sr isotopic compositions of the Japan Sea basalts have been interpreted in terms of eastward asthenospheric flow, as have the lavas of the Sikhote-Alin and northeastern Japan. The timing of volcanic activity in the Japan Sea region (i.e., from 21.2 to 14.86 Ma) is consistent with the timing of rotational crustal movements inferred from paleomagnetic studies of the Japanese Islands (i.e., 14.8–4.2 Ma for southwest Japan and 16.5–14.4 Ma for northeast Japan).  相似文献   

12.
The restricted environment of the Black Sea is particularly sensitive to climatic and oceanographic fluctuations, owing to its connection with the Mediterranean Sea via the narrow Bosphorus Strait. The exact mechanism and timing of the most recent connection between these water bodies is controversial with debate on the post-glacial history of the Black Sea being dependent on radiocarbon dating for numerical ages. Here we present new 23 accelerator mass spectrometer (AMS) radiocarbon ages on peat and bivalve molluscs, supported by the first amino acid racemization (AAR) dating of bivalve molluscs (n = 66) in the Black Sea. These data indicate infilling of the Black Sea during the early Holocene from an initial depth 107 m below sea-level, and 72 m below that of the Bosphorus Sill. These data combined with a review of previous radiocarbon ages has enabled a unique perspective on the post-glacial Black Sea. A sea-level curve based on conventional and AMS radiocarbon ages on peat and AMS-based ages on Dreissena sp. shells indicate the water-level in the earlier lake phase continued, until the early Holocene, to be lower than the Bosphorus Sill after the Younger Dryas ended. However, the absence of AMS-dated mollusc ages from the shelves of this basin older than the Younger Dryas is suggestive of sub-aerial exposure of the shelves, and comparatively lower water-levels when the Younger Dryas began. Thus post-glacial outflow from the Black Sea occurred through a lowered or open Bosphorus seaway. Basin-wide radiocarbon ages on peat indicate a prompt increase in water-level from that of the pre-existing and unconnected palaeo-lake during the earliest Holocene (9600–9200 cal a BP). Mass colonisation of the Black Sea by Mediterranean taxa did not occur until salinity had risen sufficiently, a process which took 1000 a or more from the initial transgressive event. This gradual change in salinity contrasts with the prompt transgression which would have taken ~400 a to occur.  相似文献   

13.
The Central Asian Orogenic Belt (CAOB) constitutes the largest Phanerozoic accretionary orogen on Earth. It extends over 5000 km and hosting numerous metal deposits. The Chinese Altay Orogen, an important element of the CAOB, hosts abundant Devonian (ca. 410–370 Ma) deposits. The 40Ar/39Ar dating of seven mica separates from the representative samples syngenetic with orogenic-type mineralization is summarized to record a poorly studied Permian to Triassic metallogenic episode in the Chinese Altay Orogen. The Kelan and Maizi basins in the Chinese Altay Orogen, which likely represent an arc accretionary complex, contain a series of polymetallic lode deposits hosted in low-grade metamorphic volcano–sedimentary rocks. Two muscovite and five biotite separates were obtained from the ore-forming veins paragenetically associated with Au-bearing polymetallic sulfides in the Keketale Pb–Zn, Wulasigou Cu, Tiemurt Pb–Zn, Dadonggou Pb–Zn and Sarekuobu Au deposits. These separates yielded 40Ar/39Ar plateau ages ranging from 260 Ma to 205 Ma. Integration of these results with other published geological and geochronological data indicates that the Au–Cu–Pb–Zn mineralization post-dated the final CAOB assembly, with fluid movement and mineralization possibly driven by regional metamorphism and deformation. It is herein proposed for a metallogenic model that the metamorphic fluid migration following final assembly of the CAOB results into the formation of the deposits.  相似文献   

14.
《Gondwana Research》2014,26(4):1660-1679
New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific–Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr–Nd–Pb–Hf isotopic compositions of the MBS display a strong affinity to a HIMU-type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly.  相似文献   

15.
The large Huamei'ao tungsten deposit, with total WO3 reserves of 67,400 tons at an average grade of 1.334% WO3, is located in the convergent zone of the eastern Nanling E–W-trending tectono-magmatic belt and the western Wuyishan NNE–SSW-trending tectono-magmatic belt in southern Jiangxi Province, China. The tungsten mineralization in this deposit is mainly found in quartz–wolframite veins, with most orebodies distributed at the outer contact zone between concealed Late Jurassic granitic stocks and Sinian weakly metamorphosed sandstones and phyllites. Zircons collected from medium- to fine-grained biotite granite in a diamond drill hole at a sea level of ca. − 10 m yield a crystallization age of 159.9 (± 1.2) Ma through laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS) U–Pb dating. Molybdenite and muscovite that were both separated from quartz–wolframite veins yield a Re–Os isochron age of 158.5 (± 3.3) Ma and an 40Ar–39Ar weighted plateau age of 157.9 (± 1.1) Ma, respectively. These dates, obtained via three independent geochronological techniques, constrain the ore-forming age of the Huamei'ao deposit and link the genesis of the ore and the underlying granite. Analyses of available high-precision zircon U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar radiometric ages of major W–Sn deposits in southern Jiangxi Province indicate that there is no significant time interval between W–Sn mineralization and its intimately associated parent granite emplacement (interval of 0–6 Ma). These deposits formed over three intervals during the Mesozoic (240–210, 170–150, and 130–90 Ma), with large-scale W–Sn mineralization occurring mainly between 160 and 150 Ma. The majority of W–Sn deposits in this region are located in southern Jiangxi and southern Hunan provinces.  相似文献   

16.
Assuming stability of the Black Sea system and conservative behavior of sulfate in relation to salinity outside the bottom convective layer (BCL), the influence of shelf-modified Mediterranean water (SMMW) on the water column of the Black Sea below the core of the cold intermediate layer (CIL) was estimated on the basis of variations in the sulfur isotope composition of sulfate. As a result of construction of the model of mixing of three water masses, it was shown that the SMMW fraction in the area of hydrogen sulfide onset at a salinity of 20.8–20.9 was 5–7 times higher than the amount of water produced by mixing of the CIL and the BCL. The SMMW fraction decreased with depth rapidly and was only 10% at a depth of 1000 m. Significant supply of SMMW to the pycnocline area provided a high renewal rate of water, which prevented accumulation of 32S-rich sulfate resulted from hydrogen sulfide oxidation.  相似文献   

17.
The Hukeng tungsten deposit, located in the Wugongshan area in central part of Jiangxi province, South China, is a large-scale quartz-vein wolframite deposit. It is hosted in the Hukeng granitic intrusion. Based on the mineral assemblage and crosscutting relationship of the veins, three mineralization stages are identified, including: (1) quartz–wolframite stage, (2) quartz–fluorite–wolframite stage, and (3) quartz–pyrite–sphalerite–wolframite stage.The homogenization temperatures of fluid inclusions in vein quartz vary from 220 to 320 °C, and the salinities are from 0 to 10 wt.% NaCl equiv.; corresponding densities range from 0.7 to 1 g/cm3. These features indicated that the ore-forming fluids in the Hukeng tungsten deposit have medium temperature, low density and low salinity.The δ18OSMOW values of quartz range from 10.8‰ to 14.4‰, with corresponding δ18Ofluid values of 3.7‰ to 7.7‰, and δD values of fluid inclusions of between ? 70‰ and ? 55‰. The combined isotopic data indicate that the ore-forming fluids of the Hukeng tungsten deposit were mainly derived from magmatic water, with some minor input from meteoric water.We have carried out molybdenite Re–Os and muscovite 40Ar/39Ar dating to constrain the timing of mineralization. Re–Os dating of six molybdenite samples yielded model ages ranging from 149.1 ± 2.0 to 150.7 ± 3.7 Ma, with an average of 150.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 150.2 ± 2.2 Ma (MSWD = 0.60). Hydrothermal muscovite yields a plateau 40Ar/39Ar age of 147.2 ± 1.4 Ma. 40Ar/39Ar age is in good agreement with the Re–Os age. These ages show that the timing of tungsten mineralization occurred at about 150 Ma. Our new data, when combined with published geochronological results from the other major deposits in this region, suggest that widespread W mineralization occurred in the Late Jurassic throughout South China.  相似文献   

18.
A full understanding of the Mio-Pliocene palaeogeographical and palaeoenvironmental changes in the circum-Mediterranean region during the Messinian Salinity Crisis (MSC) is at present hampered by the lack of reliable chronostratigraphic correlations between the Mediterranean and Paratethys regions. Here, we present magnetostratigraphic ages for the Upper Miocene to Pliocene deposits of the southern Carpathian foredeep in Romania. These ages are in good agreement with those recently obtained from the eastern Carpathian foredeep and define a new chronology for the eastern Paratethys. The Meotian/Pontian boundary is not biostratigraphically constrained in our sections, but according to the geological map of the region arrives at ∼5.8 Ma. The Pontian/Dacian boundary is dated at c. 4.8 Ma and the Dacian/Romanian boundary at c. 4.1 Ma. The main part of the MSC (5.96–5.33 Ma) is thus represented by the Pontian Stage, but the observed palaeoenvironmental and biostratigraphic changes in our sections of the eastern Paratethys do not indicate any relation with the dramatic desiccation and reflooding events of the Mediterranean.  相似文献   

19.
《Comptes Rendus Geoscience》2002,334(16):1141-1148
40Ar/39Ar dating on muscovites, performed on leucogranitic intrusions of Charroux–Civray plutonic complex, points out the existence of two peraluminous magmatic activities, whose equivalents are known in the Limousin: (1) garnet-bearing leucogranitic veins at ca. 340 Ma; (2) a specialised leucogranite associated with W ± Sn deposits at ca 310 Ma. However, available 40Ar/39Ar data do not allow us to provide further data concerning the age and the geometry at depth of a large leucogranitic body identified by geophysics. To cite this article: P. Alexandre et al., C. R. Geoscience 334 (2002) 1141–1148.  相似文献   

20.
Baguio, in the Central Cordillera of Northern Luzon, is a district that displays porphyry copper and epithermal gold mineralization, associated with Early Miocene–Pliocene–Quaternary calc‐alkaline and adakitic intrusions. Systematic sampling, K‐Ar dating, major and trace elements, and Sr, Nd, Pb isotopic analyses of fresh magmatic rocks indicate three magmatic pulses: an Early Miocene phase (21.2–18.7 Ma), a Middle–Late Miocene phase (15.3–8 Ma) and finally a Pliocene–Quaternary event (3–1 Ma). The first phase emplaced evolved calc‐alkaline magmas, essentially within the Agno Batholith complex, and is thought to be related to the westward‐dipping subduction of the West Philippine Basin. After a quiescence period during which the Kennon limestone was deposited, magmatic activity resumed at 15.3 Ma, in connection with the start of the subduction of the South China Sea along the Manila Trench. It emplaced first petrogenetically related and relatively unradiogenic low‐K calc‐alkaline lavas and intermediate adakites. Temporal geochemical patterns observed from 15.3 to 1 Ma include progressive enrichment in K and other large ion lithophile elements, increase in radiogenic Sr and Pb and corresponding decrease in radiogenic Nd. These features are thought to reflect the progressive addition to the Luzon arc mantle wedge of incompatible elements largely inherited from South China Sea sediments. The origin of the long quiescence period, from 8 to 3 Ma, remains problematic. It might represent a local consequence of the docking of the Zambales ophiolitic terrane to Northern Luzon. Then, magmatic activity resumed at 3 Ma, emplacing chemically diversified rocks ranging from low K to high K and including a large proportion of adakites, especially during the Quaternary (dacitic plugs). The authors tentatively relate this diversity to the development of a slab tear linked with the subduction of the fossil South China Sea ridge beneath the Baguio area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号