首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the time‐scales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic.  相似文献   

2.
The age of the Nantuo Formation and Nantuo glaciation in South China   总被引:1,自引:0,他引:1  
A U–Pb sensitive high‐resolution ion microprobe (SHRIMP) age of 654.5 ± 3.8 Ma from an ash bed immediately below the Nantuo Formation in South China provides the lowest age constraint for the Nantuo glaciation, which has been correlated with the global ‘Marinoan’ glaciation. A U–Pb SHRIMP age of 636.3 ± 4.9 Ma from a fallout tuff within the basal layer of the Nantuo Formation, along with the existing age of 635.2 ± 0.6 Ma from its overlying Doushantuo cap carbonate, suggests that the traditionally defined Nantuo Formation may have been deposited in a short time period at the end of the Nantuo glaciation. In combination with available ages globally, the data support a relatively short duration and rapid termination of ‘Marinoan’ glaciations.  相似文献   

3.
To verify the usefulness of calcite U–Pb measurement for vertebrate‐bearing strata in the Eastern Gobi, Mongolia, we performed laser ablation‐inductively coupled plasma‐mass spectrometry calcite U–Pb and trace element analyses of three caliche (calcrete) of the Bayn Shire Formation. The trace element analysis demonstrates high concentration of U in the calcites. Two meaningful calcite U–Pb ages were obtained; 95.9 ± 6.0 and 89.6 ± 4.0 Ma, which are consistent with published ages from the Bayn Shire Formation. Our results demonstrate that the calcite U–Pb method can be powerful tool for age determination of vertebrate‐bearing strata in the Gobi that do not contain index fossils or beds, but do contain caliches. This would make it possible for a comparison of biostratigraphy between the Gobi and other areas yielding abundant vertebrate fossils in Asia, North America and Europe, based on chronological data.  相似文献   

4.
《Gondwana Research》2016,29(4):1449-1465
We report here in-situ U–Pb and Hf isotopic results of detrital zircons from sixteen Cambrian–Silurian siliciclastic samples across the Nanhua foreland basin, South China. Together with published data from Ediacaran–Silurian sandstones in the region, we establish the temporal and spatial provenance evolution across the basin. Except for samples from northeast Yangtze, all other Ediacaran–Silurian samples exhibit a prominent population of 1100–900 Ma, moderate populations of 850–700 Ma and 650–490 Ma, and minor populations of 2500 Ma and 2000–1300 Ma, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon Hf isotopes further reveal four episodes of juvenile crustal growth at 2.5 Ga, 1.8 Ga, 1.4 Ga and 1.0 Ga in the source regions. Utilizing the basin history and late Neoproterozoic to early Paleozoic paleogeography of South China, we conclude that the Ediacaran–Cambrian sediments in the Nanhua foreland basin were mainly sourced from northern India and adjacent orogens, and the Ordovician–Silurian sediments were derived from both locally recycled Ediacaran–Cambrian rocks and eroded Cathaysian basement. The Wuyi–Yunkai late-orogenic magmatic rocks also contributed to the Silurian sediments in the basin. The upper-Ordovician to Silurian samples in northeast Yangtze received higher proportions of local Cryogenian (850–700 Ma) magmatic rocks which were uplifted during late-Ordovician to Silurian time. We speculate that there was an Ediacaran–Cambrian collisional orogen between South China and northern India, shedding sediments to the early Nanhua foreland basin. Far-field stress during the late stage of this collisional orogeny triggered the Ordovician–Silurian intraplate Wuyi–Yunkai orogeny in South China, and erosion of the local Wuyi–Yunkai orogen further provided detritus to the late Nanhua foreland basin.  相似文献   

5.
The Huaheitan molybdenum deposit in the Beishan area of northwest China consists of quartz‐sulfide veins. Orebodies occur in the contact zone of the Huaniushan granite. LA‐ICPMS U–Pb zircon dating constrains the crystallization of the granite at 225.6 ± 2.2 Ma (2σ, MSWD = 4.5). Re–Os dating of five molybdenite samples yield model ages ranging from 223.2 ± 3.5 Ma to 228.6 ± 3.4 Ma, with an average of 225.2 ± 2.4 Ma. The U–Pb and Re–Os ages are identical within the error, suggesting that the granite and related Huaheitan molybdenum deposit formed in the Late Triassic. Our new data, combined with published geochronological results from the other molybdenum deposits in this region, imply that intensive magmatism and Mo mineralization occurred during 240 Ma to 220 Ma throughout the Beishan area.  相似文献   

6.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

7.
Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).  相似文献   

8.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

9.
Understanding the evolution of the northern Paraguay Belt, Brazil, is critical in two current controversies: (i) the number, timing and significance of Ediacaran glaciations; and (ii) the timing of amalgamation of South American Gondwana. The Neoproterozoic Alto Paraguay Group forms much of the northern Paraguay Belt. The Serra Azul Formation, within this Group, contains unequivocal evidence for a glacial influence on sedimentation, including multi‐directional striations on sandstone clasts and striated, polished and bullet‐shaped mudstone clasts. However, the age of the Serra Azul Formation is not well‐constrained. The northern Paraguay Belt also formed after the traditionally accepted time for amalgamation of South American Gondwana. If the orogen represents closure of an ocean, then this traditional view is incorrect. A significant number of single grain 40Ar/39Ar detrital muscovite cooling ages (ca 120) from the Alto Paraguay Group are presented. The three youngest grains from the Serra Azul Formation yield a weighted mean age of 640 ± 15 Myr, providing a robust maximum depositional age for this formation. This age, when considered with other data, suggests that the Serra Azul Formation developed in a mid‐Ediacaran glaciation consistent with that expressed in the Gaskiers Formation of Newfoundland, Canada. Cryogenian 40Ar/39Ar detrital muscovite ages from the Alto Paraguay Group are hard to reconcile with the known geology of Amazonia and are interpreted as being sourced from the evolving orogen to the east – from an arc terrane, possibly the Goiás–Paranapanema Massif. Detrital muscovites in the upper part of the Alto Paraguay Group are as young as 544 ± 7 Myr, consistent with mounting evidence that indicates a Cambrian age for orogenesis within the Paraguay Belt during the final amalgamation of Gondwana. This article suggests that the data best support a model where ocean closure in the region continued until Ediacaran/Cambrian times, with final ocean closure represented by orogenesis in the Paraguay–Araguaia orogen.  相似文献   

10.
Dating of young (<1 Ma) geological events has long been a challenge for geochronologists. Combining (U‐Th)/He with U‐Pb or U‐Th‐disequilibrium dating methods offers a unique dating tool that can address this important period. We present a new methodology that combines U‐Pb LA‐ICP‐MS and (U‐Th)/He dating of zircon and use it to date two Pleistocene marker tephras (A1Pm and DPm) from the Omachi Tephra suite (Japan). A1Pm and DPm yield U‐Pb ages in the range of 350–850 and ~140–630 ka, respectively, documenting protracted periods of zircon crystallisation (100's of k.y.) prior to eruption. (U‐Th)/He ages constrain the eruption ages of the A1Pm and DPm tephras to 375 ± 13 and 97.1 ± 7.3 ka, respectively, and are in agreement with published estimates. This study demonstrates the potential of combined zircon U‐Pb LA‐ICP‐MS and (U‐Th)/He dating to constrain magmatic and eruption events in the critical ~100 ka–1 Ma interval.  相似文献   

11.
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating,including basalt and andesite from Borehole SCSV1 and volcanic agglomerate from Borehole SCSV2,respectively.A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene,in which the pre-Paleocene data dominate.The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin.Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones,and have REE features of crustal zircon.Zircon U-Pb dates of 2518–2481 Ma,1933– 1724 Ma,and 1094–1040 Ma from the SCSV1 volcanics,and 2810–2718 Ma,2458–2421 Ma,and 1850 –993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea,well comparable with age records dated from the Cathaysia block.The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia,respectively.The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2.The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events.Their age signatures from the SCSV1 cover 266.5±3.5 Ma,241.1±6.0 Ma,184.0±4.2 Ma,160.9±4.2 Ma and 102.8±2.6 Ma,and from the SCSV2 are 244±15 Ma,158.1±3.5 Ma,141±13 Ma and 96.3±2.1 Ma.Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement,Caledonian orogeny,and Indosinian orogeny to Yanshannian magmatism.This process can be well comparable with the tectonic evolution of South China,largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.  相似文献   

12.
澄江组是华南新元古代地层中的重要地层单元之一,其确切沉积时限对于建立和完善华南新元古代区域地层格架具有关键意义。对滇中澄江组层型剖面顶部的凝灰岩夹层进行高精度SHRIMP锆石U-Pb定年研究,获得3组有效的206Pb/238U加权平均年龄值,其分别为(819±14)Ma(MSWD=0.15)、(781±11)Ma(MSWD=0.24)和(725±11)Ma(MSWD=0.65)。其中,最年轻的一组年龄值(725±11)Ma被解释为澄江组顶部凝灰岩夹层的形成时间,可以代表滇中澄江组的顶界年龄,从而进一步确认澄江组的沉积时限为800~725 Ma。结合相关研究资料,证实澄江组与开建桥组、莲沱组的沉积时限基本相当,三者与下冰期长安组不存在对比关系,而应与冰期前板溪群的上部进行对比。此外,推测两组年龄值较老的锆石可能是与新元古代罗迪尼亚(Rodinia)超大陆裂解有关的幕式岩浆活动的记录。  相似文献   

13.
The Taolaituo porphyry‐type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. The mineralization occurs mainly as veins, lenses and layers within the host porphyry. To better understand the link between the mineralization and the host igneous rocks, we studied samples from the underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Five molybdenite samples yield a Re–Os isochron weighted mean age of 133.0 ± 0.82 Ma, whereas the porphyry granitoids samples yield crystallization ages of 133 ± 1 Ma and 130.4 ± 1.3 Ma. The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to the Early Cretaceous porphyry emplacement. Re contents of the molybdenites range from 21.74 to 42.45 ppm, with an average of 32.69 ppm, whereas δ34S values vary between 3.7‰ and 4.2‰, which is typical of mantle sulphur. The 206Pb/204Pb, 207Pb/ 204Pb and 208Pb/204Pb vary in the ranges of 18.276–18.385, 15.566–15.580 and 38.321–38.382, respectively. The Taolaituo Early Cretaceous granitoids are A‐type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Taolaituo deposit occurred contemporaneously with the Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra‐continental extension in northeast China. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The Ad Dawadimi Terrane is an Ediacaran basin of the Arabian Nubian Shield (ANS), Saudi Arabia. This basin terrane is situated in the far eastern part of the ANS and represents the youngest accretion event of the exposed ANS. Therefore, the timing of events within the basin is key to understanding both the closure of the Mozambique Ocean and the amalgamation of Gondwana along the northern East African Orogen. Here we present U/Pb detrital zircon data for the Abt Formation, the principle basin sediments of the Ad Dawadimi Terrane, along with 40Ar/39Ar ages on muscovite and whole rock Sm/Nd data. These data indicate that deep-water deposition in the Abt Basin did not end until after ca. 620 Ma and that deformation and greenschist-facies metamorphism of the Abt Formation occurred at 620 ± 3 (2σ) Ma along an active margin. This is the youngest terrane amalgamation event reported so far in the Arabian–Nubian Shield, but we suggest even younger sutures lie further east beneath the Phanerozoic cover of eastern Saudi Arabia. Our results suggest that the Ediacaran basins of the eastern ANS were not part of the Huqf basin in Oman, which was instead part of a passive margin of Neoproterozoic India, separated from the active margin of Africa by the Mozambique Ocean that probably did not close until the late Ediacaran or early Cambrian.  相似文献   

15.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   

16.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   

17.
Back‐arc basins hold the key in understanding the geodynamics of orogenic processes. The Qinling–Dabie orogenic belt in central China is one of the most important orogenic belts constraining the tectonic framework of eastern Asia. However, its Palaeozoic accretionary processes remain equivocal, mainly derived from the age uncertainty of the back‐arc basin in the Qinling orogen. We carried out zircon U–Pb geochronology for two pyroclastic volcanic rocks intercalated within the Erlangping back‐arc basin basalts. They yield U–Pb ages of 435.8 ± 4.2 Ma and 435.7 ± 3.8 Ma, which precisely constrain the timing of the back‐arc basin opening. The opening of the Erlangping back‐arc basin might have been triggered by the rollback of the Proto‐Tethyan oceanic slab due to the southward migration of arc magmatism at ca. 440 Ma. The Palaeozoic tectonic evolution and orogen‐scale geodynamic processes of the Qinling orogen are thus reconstructed.  相似文献   

18.
The Middle–Lower Yangtze Region (MLYR) is one of the most important metallogenic belts in China that hosts numerous Cu–Fe–Au–S deposits. The Hucunnan deposit in the central part of MLYR is a newly discovered porphyry–skarn‐type copper–molybdenum deposit during recent drilling exploration. Laser ablation ICP–MS analysis carried out in this study yields U–Pb isotopic ages of 137.5 ± 1.2 Ma for the Cu–Mo bearing granodiorite rock and 125.0 ± 1.5 Ma for the Cu‐bearing quartz diorites. The Re–Os isotopic dating of seven molybdenite samples gave an isochron age of 139.5 ± 1.1 Ma, suggesting a syn‐magma mineralization of molybdenite in the Hucunnan deposit. Since porphyry‐type molybdenum deposits are rare in central MLYR, the discovery of the Hucunnan deposit suggests possible molybdenite mineralizations in the deep places of the Cu–Mo bearing granitoids. In addition, the U–Pb isotopic age of 125 Ma for the Cu‐bearing quartz diorites implies a new Cu mineralization period for the MLYR that was rarely reported by previous studies.  相似文献   

19.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

20.
《International Geology Review》2012,54(15):1876-1886
ABSTRACT

The Neoproterozoic glaciations represent a milestone in the Earth evolution due to their influence on atmosphere, biosphere and hydrosphere. Evidence for the Sturtian glaciation, the early stage of Cryogenian, has been recorded worldwide, but the precise timing and synchroneity of its counterpart, the Chang’an glaciation, in South China have been controversial. As such, new zircon U–Pb ages from the pre-Sturtian Gongdong Formation and the overlying the Chang’an Formation in southeastern Yangtze Block were reported. The youngest U–Pb zircon age from a tuff sample of the topmost Gongdong Formation was 716.8 ± 6.8 Ma, and that from a sandstone sample of the lower Chang’an Formation was 725.9 ± 4.4 Ma. The zircon weighted mean age of 716.8 ± 6.8 Ma was interpreted as the maximum depositional age of the termination of the Danzhou Group. This age, along with the ages reported from the bottom of the Danzhou Group, constrains deposition of the Danzhou Group to between ca. 820 Ma and ca. 715 Ma. The age of 716.8 ± 6.8 Ma from the top of the Gongdong Formation is consistent with the SIMS U-Pb age of 715.9 ± 2.8 Ma from the Sibao section, as well as ages from the Banxi Group, Liantuo Group, and Kaijianqiao Formation in the Yangtze Block, which further constrain the onset time of the Sturtian glaciation in South China at ca. 715 Ma. It is also, with uncertainties, consistent with ages from pre-Sturtian strata in Laurentia and Oman, which indicates a global synchroneity and extent for the Sturtian glaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号