首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
Relationships between two interstellar reddening-free quantities, the photometric parameter Q and the Balmer jump D, are derived for main sequence O9-G0 stars. We compare our average values of the Balmer jumps for main sequence stars with a theoretical model of the Balmer jump as a function of the effective temperature for main sequence stars. The theoretical and observational data, as well as our calculations, are shown to correlate well.  相似文献   

2.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The proper motions of stars in the main sequence and of luminosity class III giants are analyzed kinematically. A new method has been used for reliably separating all the parameters of the Ogorodnikov-Milne model based on representing the proper motions of the stars in coordinate systems whose poles lie on each of the three principal axes of the galactic trihedron. Solutions for stars in different spectral classes are obtained. The main sequence is found to subdivide into two zones (near and far stars) with a fairly sharp boundary at B-V=0.5. It is shown that the Parenago effect may be related to the different distances from the sun of the main sequence stars.  相似文献   

4.
An αΩ dynamo is considered responsible for magnetic activity in late K/early M main sequence stars, which is expected to be enhanced in later types as the surface convection zone deepens. At about spectral type M3, where the star presumably becomes fully convective, the magnetic field is theorized to change in character, switching to a more uniform, turbulence‐generated surface field. As a consequence, the nature of activity is expected to change at later spectral types. In field stars, age, mass, rotation and perhaps metallicity play a role in determining the activity level, but the effects are difficult to disentangle. Therefore, open clusters with a more homogeneous sample can provide valuable information on the dynamo operation and magnetic activity of lower main sequence stars. We present preliminary results of our spectroscopic study for activity indicators among the lower main sequence stars of the intermediate age (700 My) open cluster Praesepe. Chromospheric activity as manifested by the presence/absence of Hα in late K/M stars is presented, and other activity indicators are discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
There is a long term dynamical heating of stellar populations with age observed in the age – velocity dispersion – relation (AVR). This effect allows a determination of the star formation history SFR(t) from local kinematical data of main sequence stars. Using a self-consistent disk model for the vertical structure of the disk, we find from the kinematics of the stars in the solar neighbourhood that the SFR shows a moderate star burst about 10 Gyr ago followed by a continuous decline to the present day value consistent with the observed number of OB stars. The gravitational potential of the gas component and of the Dark Matter Halo is included and the effect of chemical enrichment, finite lifetime of the stars and mass loss of the stellar component are taken into account. The scale heights for main sequence stars together with the SFR is then used to determine constistently the IMF from the observed local luminosity function. The main new result is that the power law break in the present day mass function (PDMF) around 1 M is entirely due to evolutionary effects of the disk and does not appear in the IMF. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The low rotation velocities of magnetic CP stars are discussed. Arguments against the involvement of the magnetic field in the loss of angular momentum are given: (1) the fields are not strong enough in young stars in the stage of evolution prior to the main sequence; (2) there is no significant statistical correlation between the magnetic field strength and the rotation period of CP stars; (3) stars with short periods have the highest fields; (4) a substantial number of stars with very low magnetic fields (B e < 500 G) have rotation speeds that are typical of other CP stars; (5) simulations of the magnetic fields by Leroy and the author show that the orientation of dipoles inside rotating stars, both slow and fast, is consistent with an arbitrary orientation of the dipoles; and, (6) slow rotators with P>25 days, which form 12% of the total, probably lie at the edge of the velocity distribution for low mass stars. All of these properties conflict with the hypothesis of magnetic braking of CP stars.  相似文献   

7.
For an understanding of Galactic stellar populations in the SDSS filter system well defined stellar samples are needed. The nearby stars provide a complete stellar sample representative for the thin disc population. We compare the filter transformations of different authors applied to the main sequence stars from F to K dwarfs to SDSS filter system and discuss the properties of the main sequence. The location of the mean main sequence in colour‐magnitude diagrams is very sensitive to systematic differences in the filter transformation. A comparison with fiducial sequences of star clusters observed in g ′, r ′, and i ′ show good agreement. Theoretical isochrones from Padua and from Dartmouth have still some problems, especially in the (r i) colours. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The Hertzsprung-Russell diagram of the Large Magellanic Cloud compiled recently by Fitzpatrick & Garmany (1990) shows that there are a number of supergiant stars immediately redward of the main sequence although theoretical models of massive stars with normal hydrogen abundance predict that the region 4.5 ≤ logT eff ≤ 4.3 should be un-populated (“gap”). Supergiants having surface enrichment of helium acquired for example from a previous phase of accretion from a binary companion, however, evolve in a way so that the evolved models and observed data are consistent — an observation first made by Tuchman & Wheeler (1990). We compare the available optical data on OB supergiants with computed evolutionary tracks of massive stars of metallicity relevant to the LMC with and without helium-enriched envelopes and conclude that a large fraction ( 60 per cent) of supergiant stars may occur in binaries. As these less evolved binaries will later evolve into massive X-ray binaries, the observed number and orbital period distribution of the latter can constrain the evolutionary scenarios of the supergiant binaries. The distributions of post main sequence binaries and closely related systems like WR + O stars are bimodal-consisting of close and wide binaries in which the latter type is numerically dominating. When the primary star explodes as a supernova leaving behind a neutron star, the system receives a kick and in some cases can lead to runaway O-stars. We calculate the expected space velocity distribution for these systems. After the second supernova explosion, the binaries in most cases, will be disrupted leading to two runaway neutron stars. In between the two explosions, the first born neutron star’s spin evolution will be affected by accretion of mass from the companion star. We determine the steady-state spin and radio luminosity distributions of single pulsars born from the massive stars under some simple assumptions. Due to their great distance, only the brightest radio pulsars may be detected in a flux-limited survey of the LMC. A small but significant number of observable single radio pulsars arising out of the disrupted massive binaries may appear in the short spin period range. Most pulsars will have a low velocity of ejection and therefore may cluster around the OB associations in the LMC.  相似文献   

9.
The results of investigations of a number of eclipsing Wolf-Rayet binaries are presented. The ‘core’ radiuses, the ‘core’ temperatures and masses of WR stars in the eclipsing WR+OB binary systems V 444 Cyg, CX Cep, CQ Cep, and CV Ser are obtained (see Table I). The results obtained from the light curves analysis of the V 444 Cyg in the range λλ2460 Å-3.5μ give strong evidence for the Beals (1944) model of WR phenomenon. The chromospheric-coronal effects in the WN5 extended atmosphere are not observed up to a distance ofr?20R . In the Hertzsprung—Russell diagram all the WR stars lie on the left side from the main sequence between the main sequence and the sequence of uniform helium stars (see Figure 9). Their locations are close to those of the helium remnants formed as a result of mass exchange in massive close binary systems. The period variations in the systems V 444 Cyg and CQ Cep have been discovered and a reliable value of the mass loss rateM=10?5 M yr?1 is obtained, for the two WR stars. The results of the photometric and spectroscopic investigations of the WR stars with low mass companions (post X-ray binary stage?) are presented too (see Table II). The masses of the companions are (1–2)M , their optical luminosity is ~1036, erg s?1 which implies that these companions cannot be the normal stars. It is possible that these companions are neutron stars accreting from the stellar wind of the WR stars. Low values of the X-ray luminosities of such WR stars with low mass companions imply that the accretion of matter in such systems is distinct from the accretion process in classical X-ray binary systems. It is noted also that the parameters of low massive companions coupled with WR stars are close to those of helium stars.  相似文献   

10.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

11.
According to the work of Truran and Cameron, and of others, on the chemical evolution of the Galaxy, the first generation of stars in the Galaxy contained principally massive objects. If big-bang nucleosynthesis was responsible for the formation of helium, the first generation of stars would contain about 80% hydrogen and 20% helium, to be consistent with the approximately 22% helium found in recent stellar evolutionary studies of the Sun. The present investigation has followed the pre-main sequence evolution and the main sequence evolution of stars of 5, 10, 20, 30, 100, and 200M . Normal stars in this entire mass range normally convert hydrogen into helium by the CN-cycle on the main sequence. the present hydrogen-helium stars of 5 and 10M must reach higher central temperatures in order to convert hydrogen to helium by the proton-proton chains. Consequently, the mean densities in the stars are greater, and the surface temperatures are higher than in normal stars. In the stars of 20M and larger, the proton-proton chains do not succed in supplying the necessary luminosity of the stars by the time the contraction has produced a central temperature near 108K. At that point triple-alpha reactions generate small amounts of C12, which then acts as a catalyst in the CN-cycle, the rate of which is then limited by the beta-decays occurring within the cycle. During the evolution of these more massive stars, the central temperature remains in the vicinity of 108 K, and the surface temperature on the main sequence approaches 105 K. The star of 200M becomes unstable against surface mass loss through radiation pressure in the later stages of its main sequence evolution, and these mass loss effects were not followed. Young galaxies containing these massive stars will have a very high luminosity, but if they have formed at one-tenth the present age of the universe or later, then the light from them will mainly reside in the visible or ultraviolet, rather than in the infrared as has been suggested by Partridge and Peebles.  相似文献   

12.
The GALEX General Data Release 4/5 includes 174 spectroscopic tiles, obtained from slitless grism observations, for a total of more than 60 000 ultraviolet spectra. We have determined statistical properties of the sample of GALEX stars. We have defined a suitable system of spectroscopic indices, which measure the main mid-UV features at the GALEX low spectral resolution and we have employed it to determine the atmospheric parameters of stars in the range 4500≲T eff≲9000 K. Our preliminary results indicate that the majority of the sample is formed by main sequence F- and G-type stars, with metallicity [M/H]≳−1 dex.  相似文献   

13.
A comparison of observed stellar distributions with a three-component model of the Galaxy is presented. The analysis is based on photometric and photoelectric data obtained along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The assumed model considers the Galaxy as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. To model the observed colour distribution, we distinguish main sequence stars and disk red giants as the disk subsystem; white dwarfs, subdwarfs and intermediate giants as the thick disk subsystem; extreme subdwarfs, spheroid giants and horizontal branch stars as the spheroid subsystem. A statistical relation between the apparent and absolute magnitudes of stars which make the maximum contribution to the star counts for a given disk subsystem is derived. In order to achieve the best agreement between the model and observations, we fit the values of the ‘dip’ (aw) of the disk luminosity function, the correction to the absolute magnitude of disk red giants (ΔMVRG) and the expression for interstellar extinction. As the main result, we obtained aw = 0.6 (logarithmic scale) and ΔMVRG = 0.5 mag; the interstellar extinction has to be taken into account by the modified Sandage law.  相似文献   

14.
Understanding transport processes inside stars is one of the main goals of asteroseismology. Chemical turbulent mixing can affect the internal distribution of μ near the energy generating core, having an effect on the evolutionary tracks similar to that of overshooting. This mixing leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We describe the effects of convective overshooting and turbulent mixing on the frequencies of gravity modes in B‐type main sequence stars. In particular, the cases of p‐g mixed modes in β Cep stars and high‐order modes in SPBs are considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The rapidly oscillating Ap (roAp) stars currently represent the only main sequence stars other than the Sun which exhibit non-radial acoustic pulsations of high overtone. This makes them excellent subjects for asteroseismology, an approach which promises to yield accurate knowledge of the interior structures of stars. Of the 27 known roAp stars, 24 were discovered in Sutherland despite extensive searches conducted elsewhere. This paper reviews the discovery of the roAp phenomenon and describes the factors that contribute to the high discovery rate for these stars at Sutherland. Two long-term observational projects in progress at Sutherland are discussed,viz. the Cape roAp Star Survey and long-term monitoring of frequency variations in roAp stars.  相似文献   

16.
We present the results of the differential V light curve analysis of NN Del. We show that NN Del is an EA eclipsing binary system with a period of 99.27 days and a highly eccentric orbit. Photometric solutions obtained using the Russell and the Wilson-Devinney models seem to indicate that both components are very similar in radii and luminosities (assuming a F5 spectral type). Constraints imposed on the V luminosity of the system by the HIPPARCOS data suggest that the components of the system could be subgiants instead of main sequence stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
《New Astronomy Reviews》2000,44(1-2):93-98
Recent theoretical and observational progress has substantially improved the definition of the lower main sequence and established a new basis for a comparison of main sequence stars and the secondaries in CVs. The evolutionary sequences of Kolb & Baraffe (1999) imply that the secondaries in many CVs are expanded compared with main sequence stars of the same mass as a consequence of unusually high mass transfer rates and/or pre-CV nuclear evolution. We show that the location of the secondaries of all well-studied CVs in the spectral type period diagram implies that they are consistent with having near-solar metallicities. We show, furthermore, that the surface brightness of K/M stars depends on gravity and metallicity and present new Barnes–Evans relations valid for dwarfs of near-solar metallicity and the secondaries in CVs of the galactic disk population. Distances derived by the surface brightness method agree with recent measurements of the trigonometric parallaxes of a few selected systems.  相似文献   

18.
A study of the structure and kinematics of the Galaxy from Tautenburg Schmidt plates taken towards the Galactic centre (l = 17.0°, b = +0.8°) is presented. Proper motions and B, V magnitudes were determined for about 36 500 stars up to the limiting magnitude V = 16m.8 in a field of 8.95 square degrees. Proper motion accuracy of about 3 mas/year has been obtained for stars brighter than V = 15m. The rms errors of stellar magnitudes and (B–V) colours is about 0.1 mag. The majority of field stars in the survey are main sequence stars and red giants of the disk. They belong to the Local or Sagittarius-Carina arms, or they are located between these spiral arms. Comparing the modelled and observed distributions of magnitudes and colours, we specified the interstellar extinction determined in the preceding study of open clusters in this field. The luminosity function towards the Galactic centre was determined for stars with absolute magnitudes from -4m.35 to +9m. Kinematical and spatial distribution parameters up to 4 kpc from the Sun were obtained as a function of galactocentric distance.  相似文献   

19.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号