首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用浙江省7个国家气象站逐日降水数据和8个极端降水气候指数,应用线性拟合、Mann Kendall检验、小波分析和反距离权重插值等方法,分析1971—2020年金华地区极端降水指数时空分布特征。结果表明:金华地区除了持续干期(CDD)呈下降趋势外,年降水量(PRCPTOT)、平均日降水强度(ISDII)、强降水量(R95p)、极强降水量(R99p)、最大1 d降水量(Rx1day)、暴雨日数(R50)和持续湿期(CWD)均呈逐渐增大趋势。金华地区极端降水指数具有一定的周期性和突变特征,PRCPTOT、ISDII、R50、Rx1day、R95p和R99p第一主周期为23—25 a;CDD和CWD周期较短,第一主周期分别为2 a和4 a。PRCPTOT、ISDII、R95p和R50突变主要出现在21世纪初,Rx1day和R99p主要出现在20世纪80年代和21世纪初,均是由相对偏少期突变为相对偏多期。ISDII和CDD空间分布表现为东北部大于西南部外,除此之外的6个指数总体表现为西部大于东部。  相似文献   

2.
基于1971~2020年藏东南4个气象站逐日降水量资料,选取最大1日降水量(RX1day)、最大5日降水量(RX5day)、降水强度(SDII)、中雨日数(R10mm)、大雨日数(R20mm)、连续干燥日数(CDD)、连续湿润日数(CWD)、强降水量(R95pTOT)、极强降水量(R99pTOT)和年总降水量(PRCPTOT)共10个极端降水指数,采用线性趋势、Mann-Kendall非参数检验、R/S趋势分析、Morlet小波等方法,分析了藏东南极端降水指数的时空变化特征及其与大气环流指数、太阳黑子、海温指数之间的关系。结果表明:1971~2020年藏东南各极端降水指数变化幅度不大;RX1day、R20mm、CWD、R95pTOP、PRCPTOP呈下降趋势,尤其是近30 a(1991~2020年)PRCPTOP减幅显著,达?38.43 mm·10a?1;其他指数趋于增加,以CDD增幅最大(1.31 d·10a?1)。年代际变化尺度上,极端降水指数在20世纪90年代为正距平,21世纪前10年为负距平。极端降水指数的Hurst指数大多表现为较强或强持续性,未来将保持近50 a以来的变化趋势,仅CDD在2002年发生了气候突变。极端降水指数大多存在显著的3~4 a振荡周期。除CDD、CWD外,其他极端降水指数之间具有显著的正相关关系;而各极端降水指数均与年降水量、汛期降水量存在显著的相关性。多个极端降水指数与大气环流指数的相关性不显著,只有RX1day、RX5day、R95pTOT与亚洲极涡面积指数有显著的负相关,RX5day还与西太平洋副高强度指数有显著的正相关。绝大多数极端降水指数与太阳黑子的相关性不显著,仅有CWD与之有显著的正相关。RX5day、PRCPTOT和CDD与赤道太平洋次表层海温指数存在显著的相关关系。RX5day与印度洋暖池面积和强度指数存在显著的正相关,CWD与西太平洋暖池面积指数为显著的负相关。   相似文献   

3.
基于最新一代CMIP6全球气候模式模拟的历史和未来SSPs排放情景下的逐日降水数据和高分辨率逐日格点观测数据,采用泰勒图和分位数映射法评估订正模式性能,计算并分析SSP2—4.5和SSP5—8.5情景下福建省21世纪近期(2021—2040年)、中期(2051—2070年)和末期(2081—2100年)8个极端降水指数的变化。结果表明:在参照期(1991—2010年)经过分位数映射法偏差订正后,各极端降水指数模式模拟与观测更加接近,其空间相关系数、均方根误差和标准差的模拟性能都大幅提升。21世纪各个阶段,福建省年累积降水量(Prcptot)、极端暴雨日数(R50mm)均多于参照期,且越到后期、高排放情景下增幅越大。大于10 mm的降水日数(R10mm)和极端大雨日数(R20mm)则是增减各异,R10mm表现为福建东北部减少、其他大部分地区增加,R20mm表现为SSP2—4.5情景下21世纪近期福建西北部减少、而其他情景和时段均增加。表征降水强度的最大1 d降水量(Rx1day)、最大连续5 d降水量(Rx5day)和日降水强度指数(SDⅡ)在未来全部增加,且沿海地区增幅高于内陆地区。持...  相似文献   

4.
利用淮河流域1979—2011年260个站点观测、ERA-Interim和NCEP/DOE再分析资料的日降水量数据,选用8个极端降水指数,从空间分布、发展趋势、时间变化等方面对比分析了我国江淮流域极端降水的变化规律,研究了再分析数据的适用性,结果表明:1)持续湿润指数(CWD)、强降水日数(R10mm,R20mm)以及百分位指数(R95p,R99p)具有一致的北少南多的分布特征,而持续干燥指数(CDD)为北多南少,且强度指数(Rx1day,Rx5day)和百分位指数在浙江沿海均有极大值存在。2)大部分地区的强降水日数呈减少趋势,仅在江淮周边地区有弱上升趋势。3)区域平均的降水强度指数具有上升的趋势变化,逐月变化具有先增长后减少的结构特征,5—6月的增长量最大,峰值出现在7月,在夏末、冬季有较明显的随年代增加的趋势,在秋季则随年代减少。4)再分析资料ERA-Interim和NCEP/DOE对不同指数的再现能力有所不同,ERA-Interim对强降水日数(R10mm)、CDD、百分位指数的空间分布以及CDD的变化趋势再现能力较好,与强度指数和百分位指数年际变化的相关性较高,但对CWD变化趋势分布特点的再现能力较弱;NCEP/DOE更善于再现较强降水日数(R20mm)的空间分布以及强度指数和百分位指数的线性变化趋势。5)两种再分析资料能合理地再现强降水日数(R10mm,R20mm)和CDD年际变化特征和强度指数的季节变化特征。  相似文献   

5.
基于5个全球气候系统模式结果驱动的高分辨率区域气候模式(RegCM4)模拟输出,系统评估了RegCM4模式对中国西南地区极端降水变化的模拟性能,并科学预估了中国西南地区极端降水的未来演变特征。结果表明,RegCM4模式能合理再现西南地区极端降水变化特征,但模拟的四川中部的湿偏差较大而四川盆地干偏差较大;进行偏差校正后,模拟性能有所提升,对西南地区极端降水模拟偏差有所减小。相较于当代气候(1986—2005年),就区域平均而言在21世纪(2021—2098年),有效降水总量(Prcptot)、强降水日数(R10 mm)、日最大降水量(Rx1day)和极端降水量(R95p)都明显增加;在RCP4.5和RCP8.5情景下,Rx1day和R95p在西南大部分地区增多,到21世纪末RCP4.5情景下增加幅度分别为16.0%和12.6%;Prcptot和R10 mm未来变化存在一定的区域差异,但Prcptot和R10 mm变化在空间上较为相似,在云南南部和四川盆地地区呈现减少趋势,其余地区增加明显;且RCP8.5高排放情景的变化幅度明显大于RCP4.5情景。  相似文献   

6.
基于我国东部地区438站1961—2014年逐日降水资料,选取世界气象组织定义的最大1日降水量RX1day、最大5日降水量RX5day、持续降水日数CWD和日降水强度SDII 4个极端降水指标,采用面积加权法对中国东部地区的极端降水事件进行了季节尺度的时空变化特征的研究。结果表明:夏季极端降水指数的长期变化趋势显示,除CWD整体呈减少趋势外,RX1day,RX5day和SDII在我国黄河以南均呈现增加的趋势,而在北部以减少趋势为主。夏季极端降水指数随时间的变化表明,RX1day,RX5day和SDII整体呈现出增长的趋势,CWD则表现为减小的趋势。  相似文献   

7.
本文基于NOAA再分析逐日降水数据和22个CMIP6模式的降水模拟数据,选取了6个极端降水指数,从气候态和相对变率两个角度对CMIP6模式在中亚地区极端降水方面的模拟能力开展了评估。结果表明,在气候态方面,中亚地区降水的空间分布表现为由西南向东北递增,其东南部山地迎风侧降水偏多;多模式集合对SDII(简单降水强度)和CDD(最大无雨期)模拟的平均误差分别为-5.43%和0.45%,对PRCPTOT(年总降水量)、R1mm(有雨日数)、Rx5day(最大连续五日降水)和CWD(最大雨期)的模拟结果存在明显高估,且在中亚东南部高海拔地区误差偏高。在相对变率方面,多模式集合模拟的中亚极端降水的相对变率偏小,其中对CWD的模拟效果相对较好,平均误差为-4.78%;对R1mm的模拟效果最差,平均误差为-36.16%。模式间进行比较,TaiESM1、EC-Earth3-Veg-LR和GFDL-ESM为22个CMIP6模式中模拟能力最好的前3个模式。  相似文献   

8.
基于流域内的3个气象站点1960-2020年逐日最高气温、最低气温和降水量等基础资料,采用线性倾向回归分析法、Mann-Kendall突变检验法和小波分析等方法进行研究,分析和揭示了澜沧江上游流域在时间尺度上的变化。研究结果表明:(1)在1960-2020年,澜沧江上游流域的极端气温暖昼日数(TX90P)和暖夜日数(TN90P)呈显著上升趋势,速率分别为1.6d/10a和2.7d/10a;冷昼日数(TX10P)和冷夜日数(TN10P)呈显著下降趋势,速率分别为1.2d/10a和2.7d/10a,而极端降水变化只有持续湿润指数(CWD)的变化趋势不显著,其余三个降水指标降水总量(PRCPTOT)、1日最大降水量(RX1day)、5日最大降水量(RX5day)都呈显著上升趋势,速率分别为18.8mm/10a、0.5mm/10a和0.8mm/10a。(2)澜沧江上游流域极端气温指数冷昼日数(TX10P)在1992年出现突变点,冷夜日数(TN10P)在1978-1993年间出先了连续突变现象,极端气温指数降水总量(PRCPTOT)在2000年以后发生突变,这也说明了在时间尺度上的变化明显。(3)在1960-2020年,澜沧江上游流域的极端气温和极端降水周期特征变化显著,均存在多时间尺度的特征,第一主周期主要在10-15a、15-20a和25-30a三个时间尺度范围内。  相似文献   

9.
为揭示广元极端降水的变化趋势,利用1961~2015年逐时和逐日降水数据分析广元降水特征和极端降水事件变化。结果表明,广元降水总量年际变化不明显,小时降水越来越极端;在02~06时,小时降水量呈增加趋势,苍溪和青川降水年际倾向率日变化为单峰单谷型,旺苍、广元和剑阁为双峰单谷型。广元市大部分地区短时强降水次数逐年增加,在1980s和2000年后有明显增加,特别是1980s的旺苍站,增幅达到71%;广元小时及日降水最大值有增加趋势。1961~2015年,日降水量≥25mm天数(R25mm)、日降水强度(SDⅡ)和极端降水量(R95)的年际倾向率分别为0.0558d·a~(-1)、0.0168mm·d~(-1)·a~(-1)和0.5998mm·a~(-1),而持续降水日数(CWD)则以-0.0202d·a~(-1)的速率减少,广元每年降水的持续天数在减少,但降水情况越来越极端。  相似文献   

10.
基于赣江流域1964—2013年13个水文站的日降水资料,采用AM抽样和POT抽样相结合的方法,对极端降水序列,选定日最大降水量(RX1)、极端降水量(R95)、极端降水天数(RD95)和极端降水强度(RI95)四个指标,利用Mann-Kendall趋势分析方法、Pettitt变点检验法分别对赣江流域极端降水进行时间变化趋势和突变的分析,并利用普通克里金插值,对各指标进行空间分布的分析。研究结果表明,时间变化上,赣江流域RX1、R95和RD95均表现出一定的增加趋势,但RI95变化不大,各指标在过去50 a没有发生显著突变;空间分布上,RX1、R95和RI95沿着赣江流向从西南向东北增加,而RD95的空间分布没有明显的变化规律,存在多个极大极小值中心。  相似文献   

11.
近年来,在全球变暖的背景下,极端气候事件特别是极端降水事件,发生频率愈发上升。本文使用美国气候预测中心提供的逐日降水资料,统计分析了1979—2018年期间欧亚大陆各个子区域极端降水事件的时空变化特征。结果表明:1)从气候态的空间分布特征来看,南欧、南亚、东南亚、东亚地区为欧亚大陆全年总降水量高值区,同时也是极端强降水频发地区;而东亚地区青藏高原、中国中西部至蒙古一带,南亚地区印度次大陆以及中亚、西亚等地的部分地区则是连续性干旱事件的高频区,极端强降水事件发生频次较少;2)在21世纪初之后,东南亚、南亚、东亚、北亚、西亚和南欧这6个地区的全年总降水量发生年代际增加,且在研究时段呈显著增加趋势。在过去近40 a,南亚、东亚和中亚的RX1day(日最大降水量)、RX5day(连续5 d最大降水量)、中雨日数(R10mm)、大雨日数(R20mm)自20世纪90年代中期年代际增加,且呈长期增加趋势。南亚、北亚、东亚、中亚这4个地区的最大连续干旱日数在20世纪80年代初显著增加,但长期趋势并不显著。需要指出的是,自2014年起极端强降水事件在东南亚、南亚和东亚地区持续增多,而连续性干旱事件在北欧地区持续增多。  相似文献   

12.
21世纪前期长江中下游流域极端降水预估及不确定性分析   总被引:1,自引:0,他引:1  
在全球变暖背景下,极端降水的频率、强度以及持续时间均在显著增加,尤其是对于气候变化敏感的长江中下游流域。由于模式本身、温室气体排放情景以及自然变率存在较大的不确定性,因此未来预估变化的不确定性一直备受关注。为了能够得到对于未来极端降水更为准确的预估结果,使用NEX-GDDP(NASA Earth Exchange Global Daily Downscaled Projections)提供的19个CMIP5降尺度高分辨率数据(0.25°×0.25°),给出21世纪前期(2016—2035年)长江中下游流域极端降水的可能变化。根据长江中下游流域178个气象站1981—2005年的逐日降水量数据,计算了能够代表极端降水不同特征的指数,在评估模拟能力的基础上给出了21世纪前期RCP4.5情景下极端降水的变化。结果表明,降尺度结果对长江中下游流域极端降水有很好的模拟能力,除R90N外,所有模式模拟其余指数的空间结构与观测的相关系数均超过了0.6。其中所有模式模拟PRCPTOT和R10的相关系数均超过0.95。21世纪前期,长江中下游地区降水趋于极端化,尤其是在流域的西部地区。极端降水日数的变化在减少,表明对于极端降水的贡献主要来自于极端降水日的较大日降水量,而非极端降水日数。未来预估不确定性的大值区主要位于流域的南部地区,流域的西部地区不确定性较低,西部地区极端降水的增加应该受到更多的重视。   相似文献   

13.
采用应用于跨行业影响模式比较计划(ISIMIP)的5个CMIP5全球气候模式模拟的历史和未来RCP排放情景下的逐日降水数据,在评估模式对汉江流域1961—2005年极端降水变化特征模拟能力的基础上,进一步计算了RCP2.6、RCP4.5和RCP8.5排放情景下汉江流域未来2016—2060年极端降水总量(R95p)、极端降水贡献率(PEP)、连续5 d最大降水(RX5d)和降水强度(SDII),结果表明:RCP4.5情景下的极端降水指数上升最明显,R95p和RX5d分别较基准期增加12.5%和8.2%,PEP增加3.2个百分点,SDII微弱上升。在不同排放情景下,PEP均有一定的增幅,以流域西北和东南部增幅较大;R95p在流域绝大部分区域表现出一定的增加,且流域东南部和北部是增幅高值区;RX5d在RCP2.6和RCP4.5情景下整体表现为增加的特征,但在RCP8.5情景下整体表现为减少的特征。对极端降水预估的不确定性中,SDII的不确定性最小,RX5d的不确定性最大;不确定性大值区主要位于流域东部、东南部和西北部部分区域。  相似文献   

14.
基于贵州1961—2017年82个观测站5—9月逐日降水资料,将处于95%位置的降水量作为极端降水阈值,分析极端降水日数和极端降水量的时空分布特征及其与海拔高度的关系。结果表明:极端降水阈值在南部和东北部地区较高,大于45.0 mm;西部和西北部较低,在35.0 mm左右。多年平均极端降水日数和极端降水量呈西高东低的空间分布特点,极端降水日数在3.6~4.6 d之间,极端降水量多处在200~360 mm之间,极端降水量占5—9月降水总量的30%左右。极端降水站次和极端降水量在各旬分布上呈单峰型,最大值均出现在6月下旬。极端降水日数和极端降水量在中南部表现出不同程度的增加趋势,中部增加趋势最为明显。极端降水量对总降水量的贡献率呈增加趋势。极端降水日数和极端降水量随海拔高度的增加而增大,尤其是极端降水日数受海拔高度的影响明显。  相似文献   

15.
以1959—2008年克拉玛依市逐日降水资料为基础,采用线性趋势法、累积距平法、曼—肯德尔法、最大熵谱分析法等统计方法分析了克拉玛依近50 a的降水变化特征。结果表明:克拉玛依春、秋、冬三季及年降水量呈增加趋势,夏季降水量呈减少趋势;四季及年降水日数均呈减少趋势;从降水量级来看,R=0.0 mm的降水日数呈减少趋势,0.1 mm≤R≤4.9 mm、5.0 mm≤R≤9.9 mm、10.0 mm≤R≤24.9 mm、R≥25 mm的降水日数呈增加趋势(注:R为日降水量)。年降水量以12.9 a、8.3 a、2.9 a为主要周期,1987年为突变点,极端降水事件有增加的趋势。  相似文献   

16.
近53年江淮流域梅汛期极端降水变化特征   总被引:6,自引:2,他引:4  
杨玮  程智 《气象》2015,41(9):1126-1133
基于1961—2013年江淮流域梅汛期(6—7月)逐日降水资料,利用百分位法确定极端降水阈值,对江淮流域梅汛期极端降水的时空分布及突变特征进行分析,结果表明:95%分位极端降水阈值多在50 mm以上,大值中心主要位于湖北东部到安徽南部一带;平均极端降水强度与阈值大小的空间分布相似。极端降水量和极端降水日数整体呈现由安徽南部向四周递减的空间分布特征,极端降水量约占梅汛期降水总量的1/4~1/3。从季节内分布上看,极端强降水站次在梅汛期呈单峰型分布,各候间差异明显,其中6月第5候到7月第2候最多。极端降水量、极端降水日数以及极端降水量占梅汛期总降水量百分比均具有明显的年际变化,且上升趋势显著;江淮流域梅汛期极端降水量和极端降水站次的这种上升趋势均在1980年发生突变。  相似文献   

17.
选用昌吉州境内7个县、市气象观测站1971—2020年主汛期(6—8月)逐日降水量资料,将日雨量分为6个等级,运用线性回归、气候倾向率方法,分析各站雨日数、降水量及极端降水的变化规律。结果表明:(1)昌吉绿洲50 a主汛期雨日数最多的是木垒站,年平均24.26 d,玛纳斯次之,为20.64 d,雨日数最少的是呼图壁站,仅19.28 d。雨日数空间分布呈现出较为明显的北少南多、北部低海拔地区少于南部高海拔地区的特点,时间分布上呈单峰型,7月最多。(2)除吉木萨尔增加外,各站雨日数均呈现减少趋势;从各个量级雨日数所占比率来看,从小雨到大暴雨,随着降水量级别的增加,占比呈减少趋势;除木垒外,小雨对雨量影响最大,在6个降水量级中所占比率超过30%。(3)昌吉绿洲主汛期微雨及小雨次数贡献率为81.8%,降水量贡献率为33.9%,而大雨以上级别的降水次数贡献率仅为7.3%,降水量贡献率却达到40.4%,因此将极端降水事件的标准确定为1 d降水量≧12.1 mm。(4)昌吉绿洲50 a主汛期极端降水平均强度为20.1 mm,年平均频次为1.5次。降水频次呈增加趋势,20世纪90年代至今处于高发时段。极端降水和暴雨事件主要集中在7月中旬,其次为6月中旬,8月上旬发生次数最少。  相似文献   

18.
1918—2010年天津降水指数变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用天津1918—2010年逐日降水资料,分析了天津7个降水指数的长期变化趋势。结果发现:天津年降水量和降水日数年际差异较大,没有显著的趋势性变化。从1980年开始天津降水量和日数开始变小(少),方差也变小,四季中秋季降水量呈显著的增加趋势,夏季呈减少趋势,冬、春季变化较小。各极端降水指数中,均表现为线性趋势不明显,年际变化较大,20世纪90年代以来降水强度偏小,但呈缓慢的增加趋势,大雨日数也处于偏少阶段,大雨贡献率偏小,并呈减小趋势。四季中秋季连续5 d最大降水量呈显著的增加趋势,减少了秋季干旱的发生,最长连续无降水日数多发生在冬春季,近年来有增加的趋势。  相似文献   

19.
杭州市降水特征及极端降水趋势预估   总被引:4,自引:4,他引:0  
李正泉  宋丽莉  梁卓然  王阔  刘善峰 《气象》2018,44(6):781-789
利用国家气候观象台杭州站百年降水观测数据和CMIP5模式模拟预估数据,分析了杭州市降水长期变化特征,采用累积概率分布函数转换方式(CDF-T),降尺度预估了未来气候情景下杭州极端降水发生趋势。结果表明:杭州市年降水量在百年时序(1907—2015年)上无显著性增加或减小趋势,1980年后春季降水明显下降,下降速率约32.1mm·(10a)~(-1),冬季降水显著增加,增加速率约35.4mm·(10a)~(-1)。1988—2015年的3和6h及日降水的各重现期降水量均较1961—1987年有所增大,1961—1987年的100年一遇日最大降水已演变为1988—2015年的50年一遇甚至是20年一遇。CMIP5模式降水的降尺度分析表明,2020—2039年杭州市日极端降水强度将可能会进一步加强,2020—2039年日降水的R95值和R99p值均较现气候期(1981—2010年)有所提高,超R95p和超R99p的极端降水发生日数分别为11.08和2.24d·a~(-1),分别较现气候期平均值增加了3.52和0.69d·a~(-1)。  相似文献   

20.
利用1961—1990年江淮流域逐日降水资料、NCEP/NCAR再分析资料和HadCM3 SRES A1B情景下模式预估资料,采用典型相关分析统计降尺度方法,评估降尺度模型对当前极端降水指数的模拟能力,并对21世纪中期和末期的极端降水变化进行预估。结果表明:通过降尺度能够有效改善HadCM3对区域气候特征的模拟能力,极端降水指数气候平均态相对误差降低了30%~100%,但降尺度结果仍然在冬季存在湿偏差、夏季存在干偏差;在SRES A1B排放情景下,该区域大部分站点的极端强降水事件将增多,强度增大,极端强降水指数的变化幅度高于平均降水指数,且夏季增幅高于冬季;冬季极端降水贡献率(R95t)在21世纪中期和末期的平均增幅分别为14%和25%,夏季则分别增加24%和32%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号