首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Analysis of the litho-geochemistry of fine-grained terrigenous rocks (metapelites, shales, and mudstones) of sedimentary megasequences in the Southern Urals, Uchur-Maya area, and the Yenisei Kryazh indicates that Riphean sequences in these regions are dominated by chlorite-hydromica rocks, with montmorillonite and potassic feldspar possibly occurring only in some of the lithostratigraphic units. According to the values of their hydrolysate modulus, most clay rocks from the three Riphean metamorphosed sedimentary sequences are normal or supersialites, with hydrosialites and hydrolysates playing subordinate roles. The most lithochemicaly mature rocks are Riphean clays in the Yenisei Kryazh (Yenisei Range). The median value of their CIA is 72, whereas this index is 70 for fine-grained aluminosilicate rocks from the Uchur-Maya area and 66 for fine-grained terrigenous rocks of the Riphean stratotype. Hence, at ancient water provenance areas from which aluminosilicate clastic material was transported in sedimentation basins in the southwestern (in modern coordinates) periphery of the Siberian Platform, the climate throughout the whole Riphean was predominantly humid. At the same time, the climate at the eastern part of the East European Platform was semiarid-semihumid. The K2O/Al2O3 ratio, which is employed as an indicator of the presence of petro-and lithogenic aluminosilicate clastic component in Riphean sedimentary megasequences, shows various tendencies. According to their Sc, Cr, Ni, Th, and La concentrations and the Th/Sc ratio, the overwhelming majority of Riphean shales and mudstones notably differ from the average Archean mudstone and approach the average values for post-Archean shales. This suggests that mafic Archean rock in the provenance areas did not play any significant role in the origin of Riphean sedimentary megasequences. The Co/Hf and Ce/Cr ratios of the terrigenous rocks of the three Riphean megaseqeunces and their (Gd/Yb) N and Eu/Eu* ratios place these rocks among those containing little (if any) erosion products of primitive Archean rocks. According to various geochemical data, the source of the great majority of fine-grained aluminosilicate clastic rocks in Riphean sediment megasequences in our study areas should have been mature sialic (felsic), with much lower contents of mafic and intermediate rocks as a source of the clastic material. The REE patterns of the Riphean shales and metapelites in the Bashkir Meganticlinorium, Uchur-Maya area, and Yenisei Kryazh show some features that can be regarded as resulting from the presence of mafic material in the ancient provenance areas. This is most clearly seen in the sedimentary sequences of the Uchur-Maya area, where the decrease in the (La/Yb) N ratio up the sequence of the fine-grained terrigenous rocks from 15–16.5 to 5.8–7.1 suggests that mantle mafic volcanics were brought to the upper crust in the earliest Late Riphean in relation to rifting. Analysis of the Sm-Nd systematics of the Riphean fine-grained rocks reveals the predominance of model age values in the range of 2.5–1.7 Ga, which can be interpreted as evidence that the rocks were formed of predominantly Early Proterozoic source material. At the same time, with regard for the significant role of recycling in the genesis of the upper continental crust, it seems to be quite possible that the ancient provenance areas contained Archean complexes strongly recycled in the Early Proterozoic and sediments formed of their material. An additional likely source of material in the Riphean was mafic rocks, whose variable contribution is reflected in a decrease in the model age values. Higher Th and U concentrations in the Riphean rocks of the Yenisei Kryazh compared to those in PAAS indicate that the sources of their material were notably more mature than the sources of fine-grained aluminosilicate clastic material for the sedimentary megaseqeunces in the Southern Urals and Uchur-Maya area.  相似文献   

2.
Complex lithological, lithochemical, and geochemical data are commonly considered necessary for the reliable reconstruction of Late Precambrian climatic parameters. However, correlation of results deduced from different methods is becoming a more and more topical task. In this paper, we compare paleoclimatic data obtained with various lithological, lithochemical, and geochemical methods for the Riphean stratotype section on the western slope of the southern Urals. The results obtained turned out to be generally convergent, but, paleoclimatic reconstructions based on different methods are directly opposite to each other at some stratigraphic levels. Most likely, the controversy is probably caused by underestimation of recycling effects and incorrect extrapolation of conclusions related to the first-cycle sediments over the rocks that underwent multifold redeposition. Criteria for the recognition of recycled sedimentary units show that more than half of the Riphean stratotype section is composed of recycled materials. Hence, application of standard litho- and geochemical methods (CIA index and others) to these units yields virtual models only remotely resembling the reality rather than actual paleoclimatic indicators. Elaboration of new methods, which make it possible to avoid such errors, is a problem of in the near future.  相似文献   

3.
Recent lithological and geophysical studies of Riphean and Lower Vendian sedimentary rocks in the Kresttsy and Mid-Russian (Soligalich) aulacogens resulted in the recognition of four stages in the evolution of the East European Platform in the Late Proterozoic: (1) late Early Proterozoic–Early Riphean stage (formation of the protoplatform cover); (2) Middle Riphean stage (rifting only at platform margins); (3) late Middle Riphean–initial late Riphean stage (formation of the paleoplatform cover related to the existence of the epi-Grenville Rodinia supercontinent, which united all continents of the Earth at that time); (4) latest Riphean–early Vendian stage (rifting and origination of the Central Russian aulacogen system during the breakup of Rodinia and Cadomian orogeny.  相似文献   

4.
The Riphean Kresttsy and Pavlov Posad sedimentary basins, which occupy different positions in the East European Platform (EEP) are considered. Compositional features of terrigenous–mineral associations (TMA) of sedimentary complexes in these basins and their relation to the intrabasin and external sources of the detrital material are revealed. Two (preaulacogen and aulacogen) stages in the development of Riphean sedimentary basins in the central EEP are established. Relics of preaulacogen sequences are recorded only at the base of the sedimentary succession in the Pavlov Posad basin. These two basins formed at the aulacogen stage under an influence of strike-slip stresses. Aulacogen sequences of the Pavlov Posad basin formed in one stage, whereas sequences of the Kresttsy basin accumulated during two stages.  相似文献   

5.
The geochemical and Sm–Nd isotope characteristics of Late Precambrian and Early Cambrian sandstones previously related to the sedimentary cover of the Dzabkhan continental block are reported. It is established that the Riphean and Vendian sedimentary rocks of the Ul’zitgol’skaya and Tsaganolomskaya Formations were accumulated within the Dzabkhan continental block as a result of recycling of the terrigenous deposits formed at the expense of destruction of basement rocks and younger granite. The formation of terrigenous rocks of the Bayangol’skaya Formation after a gap in sedimentation occurred in the sedimentary basin, where only the Late Riphean formations of the juvenile crust, probably of the Dzabkhan–Mandal block were the sources, without the contribution of the ancient crustal material. The Tsaganolomskaya and Bayangol’skaya Formations were formed in different sedimentary basins and cannot be related to the same complex.  相似文献   

6.
Timan comprises the southwest edge of the Pechora Plate. The plate basement is composed of variably metamorphosed sedimentary, mainly terrigenous, and igneous rocks of the Late Precambrian age that are generally overlain by Ordovician-Cenozoic platform cover. Poor exposition and discontinuous distribution of the Upper Precambrian outcrops of dominantly fossil-free sedimentary rocks cause considerable disagreements in stratigraphic correlation. This applies equally to North Timan, which represents an uplifted block of basement, in which sedimentary-metamorphic rocks form the Barminskaya Group (~5000 m thick), previously dated as Early Riphean to Vendian. Earlier Rb-Sr and Sm-Nd isotope dating of schist and cross-cutting gabbro-dolerite and dolerite established the timing of greenschist facies metamorphism at 700 Ma. Thus, Late Riphean age of the Barminskaya Group has been suggested. Results of local U-Pb dating of detrital zircon from silty sandstones of the Malochernoretskaya Formation, which constitutes the middle part of the outcropping section of the Barminskaya Group, confirm this conclusion. Age data for 95 zircon grains cover the range of 1035–2883 Ma with age peaks at 1150, 1350, 1550, 1780, and 1885 Ma. The minimum age of zircons, considered as the lower age constraint on sediment deposition, provides grounds to date the Barminskaya Group as Late Riphean and indicates eroded rock complexes of the Fennoscandian Shield as the possible provenance areas.  相似文献   

7.
Quartz arenites of the Lower Riphean Mukun Group were formed 1.58 Ga ago exclusively in terrestrial settings of the alluvial and eolian-fluvial sedimentation. The subordinate fluvial-sabkha sediments were deposited in intracontinental lacustrine basins. Analysis of paleohydrological and granulometric data, distribution of sedimentary fluxes, and influence of the biotic factor on sedimentogenesis served as a basis for the facies-paleogeographic and basinal-stratigraphic reconstructions. These materials provided grounds for defining a peculiar eolian-fluvial type of microbial sedimentation and revealing the scale and mechanisms of the influence of terrestrial microbial ecosystems on the formation of the sedimentation basins and their sedimentary successions. It is shown that total microbial fixation and biostabilization of sediments resulted in the suppression of fluvial transport, the removal of a significant share of sedimentary material from them, and the formation of peculiar eolian-fluvial landscape, i.e., a system of very shallow ponds connected by intermittent water streams and separated by changeable eolian fields. Development of such landscapes was responsible for the accumulation of thick terrestrial quartz arenite sequences. The microbial type of eolian-fluvial sedimentation characteristic of the Early Proterozoic and initial Riphean basins determined proportions of sandy sediments on continents and shelves.  相似文献   

8.
The age distribution of detrital zircons from Upper Riphean and Early Carboniferous sandstones of the northwest part of Nordenskiöld Land (Spitsbergen Island) was studied. The results obtained supplement the previously known data on the rocks of Precambrian and Paleozoic masses of West Spitsbergen. Integrated consideration of these data showed that the time interval from the Middle Riphean to the Early Carboniferous inclusive might be subdivided into at least five stages characterized by quite different provinces supplying detritus to sedimentary basins. (The relics of these latter are represented in the present structure of western Svalbard.) The most ancient distinguished event of alteration of the sources of sedimentary matter (at the boundary of the Middle and Late Riphean) corresponds to the consolidation time of the ancient basement of Svalbard.  相似文献   

9.
We consider the general and specific features of the evolution of the composition of fine-grained terrigenous rocks in the Riphean sedimentary megasequences of the Southern Urals, Uchur-Maya region, and Yenisei Ridge. It has been established that the crust on the southwestern (in the modern frame of references) periphery of the Siberian craton was geochemically the most mature segment of the Riphean continental crust. For example, the fine-grained clastic rocks and metapelites of all Riphean lithostratigraphic units of the Yenisei Ridge have higher median contents of Th than the most mature Paleoproterozoic crust, and in median contents of Y and Cr/Th values they are the most similar to it. In the Southern Urals and Uchur-Maya region, some units of the Riphean sedimentary sequences show median contents of Y and Th and Cr/Th values close to those of primitive Archean crust. Analysis of Cr/Th variations in the fine-grained terrigenous rocks of all three megasequences shows that the minimum Cr/Th values, evidencing a predominance or the abundance of felsic rocks in provenances, are typical of the Riphean argillaceous shales and metapelites of the Yenisei Ridge. The distinct Cr/Th and Cr/Sc increase in the fine-grained clastic rocks of the Chingasan Group of the ridge reflects the large-scale destruction of continental crust during the formation of rift troughs as a result of the Rodinia breakup in the second half of the Late Riphean. The Cr/Th variations in the Lower and Middle Riphean argillaceous shales and mudstones of the Bashkirian mega-anticlinorium and Uchur-Maya region are in agreement, which evidences the subglobal occurrence of rifting in the early Middle Riphean (so-called “Mashak rifting”).  相似文献   

10.
The available geological data on the Meso-and Neoproterozoic rocks in the north of the East European Platform are considered, involving the results of a comprehensive study along regional seismic profile I-I that extends for 460 km and crosses the main structural units of the Mezen Syneclise from SW to NE. Many previously unknown structural features of aulacogens filled with thick (up to 4–8 km) sequences of the Meso-and Neoproterozoic sedimentary rocks that make up the preplate complex are demonstrated in this profile. The Riphean rocks are subdivided into three seismostratigraphic sequences: the lower part of the Lower Riphean, the Lower-Middle Riphean, and the Upper Riphean. The geodynamic events in the north of the East European Platform are correlated with those that occurred in its central part and the adjacent foldbelts.  相似文献   

11.
The Mukun Group represents a thick (>750 m) complex of terrigenous features sediments in the lower part of the Riphean sedimentary cover of the Anabar region was formed on the spacious cratonic block. The complex is remarkable for its pure quartzarenitic composition. The facies analysis with emphasis on the genetic interpretation of various sedimentary structures revealed three facies associations in its sedimentary succession: alluvial, eolian-fluvial, and fluvial-sabkha. It is shown that sedimentary material was transported into the terminal basin by a braided system of permanent rivers. Relationships between the eolian and fluvial components in the single sedimentation system of the Mukun paleobasin is considered in line with the proposed model, according to which alternation of long periods with the eolian and fluvial sedimentation was controlled by tectonics.  相似文献   

12.
Criteria were established for the estimation of the lanthanide composition of sedimentary complexes for the reconstruction of sedimentation conditions. The distribution of lanthanides was investigated in phosphorites and sedimentary rocks from the cover of the East European platform, and published data on the geochemistry of phosphorites from Eurasia were analyzed. Indicator lanthanide ratios were established for the determination of the climate and depth of sedimentation, and the possibility of the use of rare earth elements for the facies settings and transgression-regression cycles of sedimentation was demonstrated. The sedimentation conditions of the iron formations of the Proterozoic Kursk and Krivoi Rog sedimentary groups were inferred from the distribution of lanthanides: the hematite and magnetite quartzites are the deepest water complexes of the sedimentation profile; the climatic conditions of sedimentation were estimated as humid for shale subformations and humid-semihumid for iron formations; the depths of sedimentation in the Kursk basin was 50−300 m; the sources of iron were the material of weathering profiles and endogenous influx.  相似文献   

13.
The geochemical features of basal fine-grained terrigenous rocks from the Riphean sedimentary megasequences of the Southern Urals, Uchur-Maya region, and Yenisei Range were compared in order to estimate the maturity of the continental crust that was formed by the beginning of the Riphean. It was shown that initial shales from the base of the Riphean sequence of the Yenisei Range and fine-grained aluminosiliciclastic rocks from the base of the Riphean sections of the Southern Urals were formed by the erosion of a rather mature continental crust. In contrast, fine-grained terrigenous rocks from the base of the Riphean of the Uchur-Maya region were derived from immature Late Archean protoliths or their Early Proterozoic analogs. The fine-grained terrigenous rocks of the three sedimentary megasequences show different variations in the (La/Yb)N ratio. In the Southern Urals, this ratio is high (12–15) in the Burzyan Group and decreases upsection to 6–10. In the shales of the Uchur-Maya region, the (La/Yb)N ratio decreases upsection, and the La/Sc ratio shows a sympathetic behavior. This is due to a decrease in the proportion of “primitive” tonalite-trondhjemite associations of the Archean granite-greenstone terranes in the provenance area with time and the appearance of intra-plate (riftogenic?) granitoids and significant amounts of basic and ultrabasic rocks. The latter marks the onset of large rift-forming events in the Uchur-Maya region at the beginning of the Late Riphean. The (La/Yb)N of the studied rocks from the Yenisei Range are mostly similar to the PAAS ratio, but higher values were found in the Upper Vorogovka and Chingasan groups, which was related to the contribution of strongly LREE-enriched granitoids and rift felsic and alkali basaltic volcanic associations to the formation of the terrigenous material. A comparison of Rb, Sr, Y, Zr, Ba, Hf, Th, U, Cr, and Ni contents and Zr/Y, (La/Yb)N, Ni/Co, Cr/Th, Cr/Sc, and La/Th ratios in the fine-grained terrigenous rocks of the Riphean megasequences of the Southern Urals, Uchur-Maya region, and the Yenisei Range with those in the model geochemical objects (PAAS, UCPR1, UCAR2, and others) showed that, in terms of most of the parameters, the Riphean fine-grained terrigenous rocks from the three regions are similar to each other, PAAS, and Proterozoic cratonic shales. This indicates a fairly high general maturity of the protoliths that were eroded during the Riphean in the eastern East European craton and in the southeastern and southwestern parts of the Siberian craton.  相似文献   

14.
Three stratificated levels of magnesite-bearing dolomites—Lower Riphean (Bakal-Satka-Suran), Middle Riphean (Avzyan), and Upper Riphean (Min’yar)—are recognized in the Riphean section of the Bashkir Anticlinorium of the southern Urals. Dolomites contain submicroscopic (~1 μm) magnesite dissemination (MgO/CaO > 0.714). The Lower and Middle Riphean magnesite-bearing dolomites host metasomatic magnesite stocks, lenses, pockets, and large stratiform lodes formed as products of hydrothermal activity. No metasomatic magnesite bodies are known in areas without indications of the hydrothermal reworking of magnesite-bearing dolomites. Magnesite deposits of the southern Urals are typical elisional-hydrothermal products related to sedimentation and lithogenesis of carbonate rocks in isochemical system of sedimentary basin. Juvenile components did not participate in the formation of magnesite deposits in the southern Urals.  相似文献   

15.
Results of the study of noble metal specialization of Lower and Middle Riphean terrigenous rocks in the Bashkir Anticlinorium (South Urals) are reported. The study revealed their genetic differences in the relatively unaltered, i.e., “background” terrigenous rocks in type sections of the Burzyan and Yurmatau groups and in sedimentary rocks of the same stratigraphic levels from tectonic zones subjected to local dynamothermal metamorphism of the greenschist facies and intruded by mafic rocks. It has been established that Ru serves as a geochemical marker of the impact of magmatic processes on sedimentary rocks and the redistribution of noble metals during metamorphism and local metasomatism. A generalized model is proposed for the formation of noble metal geochemical specialization of Lower and Middle Riphean terrigenous rocks in the South Urals.  相似文献   

16.
It is well known that very few young faults have been recorded within the vast territories of ancient platforms that are overlain by a virtually undeformed sedimentary cover of Phanerozoic sediments. At the same time, interpretation of topographic maps of various scales, aerial photographs, and satellite images reveals predominantly linear and occasionally arcuate zones (lineaments), some of which coincide with large fracture zones related to the Riphean rifts and grabens in the platform basement. Elevated emanations of hydrogen, radon, helium, and other gases were detected over some of the lineaments, thus indicating anomalous permeability of these zones in comparison with the adjacent areas. An opinion was stated that the elevated permeability of these fault zones is provided by block vibrations as a response to lunisolar tide effects. The lineaments are of a great environmental significance because they are conduits of groundwater migration. The origin of lineaments in the platform sedimentary cover and their relations to structural elements in the basement, to evolution, and to causes of activity have provoked great interest.  相似文献   

17.
Large-scale facies associations typical of intra- and pericratonic Riphean sections of the Volga–Ural region, western slope of the Urals, Timan–Pechora region, Kola Peninsula, outer and inner parts of the Siberian, North American, and Indian platforms are considered. The reconstruction of their lateral and vertical relationships makes it possible to reconstruct principal trends in the evolution of late Precambrian sedimentary basins. Recommended special studies aimed at the restoration of spatial architecture of associations retained in fragments of Riphean sedimentary basins could yield a substantially new information on the basin filling. Such approach has important implications for estimation of the potential of late Precambrian sedimentary basins with respect to the exploration for mineral resources including hydrocarbons.  相似文献   

18.
Riphean stromatolitic formations flank the East European epi-Karelian platform only in the east and northeast. They are traceable as long (over 3600 km) relatively narrow belt consisting of two rectilinear segments, one running along the Urals western flank from southern extremity of the Bashkirian meganticlinorium to the Polyudov Ridge and the other one extending from the southern and central Timan to the Kil’din Island and northern Norway. Within the belt there are known stromatolitic formations of all Riphean erathems: the Lower and Middle Riphean stromatolitic buildups are confined to the eastern segment of its southern part only, while the Upper Riphean occur everywhere. Their distribution conformable to large structural elements of the plaform margin being replaced by carbonate-terrigenous rocks almost lacking stromatolites westward and southwestward in the Kama-Belaya aulacogen system and by substantially siliciclastic succession eastward and northeastward. The distribution area of Upper Riphean stromatolitic formations includes the Karatavian stratotype region, where 12 stromatolite beds ranging in age from ≥900 to 620 Ma are established. Many of the beds are traceable along the strike far beyond the stratotype region. Representing relatively small reference units, the beds facilitate reconstruction of distribution dynamics of the Upper Riphean stromatolites. Distribution area of the latter was always parallel to marginal structures of the platform, though being of changeable size, particularly of length. Originated in the stratotype region eastern part, stromatolites first advanced into northeastern areas never crossing boundaries of the Upper Riphean distribution area during the Early Karatavian. In the initial Late Karatavian, they occupied a longest distribution area that was sharply reduced at the end of that period. According to distribution peculiarities in space and with time, the Upper Riphean stromatolitic formations accumulated likely in peripheral areas of an open sea or oceanic basin adjacent to the East European platform, rather than in closed epiplatform basins.  相似文献   

19.
A brief account is given of the main biostratigraphical conclusions resulting from the micropalaeontological study of the Bohemian Upper Proterozoic. The relatively rich microfossil material presently known from the Barrandian area enables comparison to be made both with Middle and Upper Brioverian microfossils of the West European Brioverian complex and also with those from the Upper Riphean and Vendian platform sediments. A correlation between the relatively close geographical areas of Bohemia, Lusatia and Saxony on the basis of microorganisms is evident. Biocommunities from siliceous rocks display algal-mat assemblages. Their features are very similar to those of biogenic rocks reported from other regions, especially Australia and North America. In the Moldanubian Supergroup, the ?eský Krumlov Formation, in which graphitized phytoclasts with anatomical structures of primitive land plants have recently been found, was examined. The question of the age of this formation remains open and its study is still in progress. The correlation of the sedimentary complex of the East Sudeten (the presumably Proterozoic Záb?eh Formation) with the Palaeozoic assemblage is possible due to the finds of Chitinozoa. Remains of megascopic algae were recently found in this assemblage, along with chilinozoan chambers. This association is highly specialized and comprises new taxa of higher Thallophytes.  相似文献   

20.
The main objective of this work is the generalization of lithostratigraphic, biostratigraphic and isotopic-geochronological data characterizing carbonate rocks from type succession of the broadly acknowledged chronostratigraphic subdivision of the Lower Riphean, such as the Burzyan Group of the Southern Urals and its analogs. Using an original approach to investigation of the Rb-Sr and Pb-Pb isotopic systems in carbonates and strict criteria of their retentivity, we studied the least altered (“best”) samples of the Burzyan carbonates, which retain the 87Sr/86Sr ratio of the sedimentation environment. As long ago as 1550 ± 30 and 1430 ± 30 Ma, that ratio corresponded to 0.70460–0.70480 and 0.70456–0.70481. The results confirm the influx of the mantle material predominantly into the World Ocean of the Early Riphean. The influence of meteoric diagenesis was likely responsible for local declines of δ18O in the Burzyan carbonates down to the values of −2.5 to −1.5‰ V-PDB. In the “best” samples, this parameter ranges from −0.7 to 0‰, which is consistent with the assumption that δ18O values (0 ± 1‰) characterized the stasis of the carbonate carbon isotopic composition in oceanic water 2.06–1.25 Ga ago. C-isotopic data on carbonate from the Paleoproterozoic-Lower Riphean boundary formations of the Urals, India, North America and Siberia suggest that the mentioned stasis ended by the commencement of the Early Riphean ca. 1.6–1.5 Ga ago. In the least altered carbonates of the Early Riphean, the δ18O variation range corresponds to 4.0–4.5‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号