首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy of single-frequency ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from a global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. For several months we have been running a daily automatic Global Ionospheric Map process which inputs global GPS data and climatological ionosphere data into a Kalman filter, and produces global ionospheric TEC maps and ocean altimeter calibration data within 24 h of the end-of-day. Other groups have successfully applied this output to altimeter data from the GFO satellite and in orbit determination for the TOPEX/Poseidon satellite. Daily comparison of the global TEC maps with independent TEC data from the TOPEX altimeter is performed as a check on the calibration whenever the TOPEX data are available. Comparisons of the global TEC maps against TOPEX data will be discussed. Accuracy is best at mid-to-high absolute latitudes (∣latitude∣>30°) due to the better geographic distribution of GPS receivers and the relative simplicity of the ionosphere. Our highly data-driven technique is relatively less accurate at low latitudes and especially during ionospheric storm periods, due to the relative scarcity of GPS receivers and the structure and volatility of the ionosphere. However, it is still significantly more accurate than climatological models.  相似文献   

2.
The measurements of an increase in the total electron content (TEC) of the ionosphere during solar flares, obtained based on the GPS data, indicated that up to 30% of TEC increments corresponded to the ionospheric regions above 300 km altitude in some cases, and TEC increased mainly below altitudes of 300 km in other cases. The theoretical model of the ionosphere and plasmasphere was used to study the obtained effects. The altitude-time variations in the charged particle density in the ionospheric region from 100 to 1000 km were used depending on the solar flare spectrum. An analysis of the modeling results indicated that an intensification of the flare UV emission in the 55–65 and 85–95 nm spectral ranges results in a pronounced increase in the electron density in the topside ionosphere (above 300 km). The experimental dependences of the ionospheric TEC response amplitude on the localization and peak power of flares on the Sun in the X-ray range, obtained based on the GPS data, are also presented in the work.  相似文献   

3.
张强  赵齐乐 《地球物理学报》2019,62(12):4493-4505
2016年2月,武汉大学卫星导航定位技术研究中心(Wuhan University, WHU)正式成为新的国际GNSS服务组织(International GNSS Services, IGS)电离层联合分析中心(Ionosphere Associate Analysis Center, IAAC).本文首次系统地评估和分析了武汉大学IGS电离层分析中心自2016年日常化运行以来(2016年1月到2018年9月,太阳活动低年)的全球电离层产品的精度,并与其他六家IAACs (CODE、JPL、ESA、UPC、EMR和CAS)进行了比较分析.结果表明:WHU的全球电离层产品能够长期稳定且有效地监测全球电离层总电子含量(Total Electron Content, TEC)的时空变化;和IGS综合全球电离层产品比较,WHU的模型均方根误差和CODE、JPL相差不大,均值约为1.4 TECU,产品一致性优于其他IAACs;和GPS实测电离层TEC比较,WHU的模型内符合精度和CODE基本相当,均值约为1.4 TECU,且与电离层活动水平和地理纬度存在显著的相关性;和Jason-2测高卫星VTEC比较,WHU的全球电离层产品的系统性偏差均值约为-0.7 TECU,在不同纬度约为-3.0到1.0 TECU,且与地理纬度存在近似抛物线函数的关系;WHU的模型外符合精度和CODE、JPL以及CAS基本一致,均值约为2.9 TECU,且在中高纬度地区优于低纬度地区,北半球优于南半球.  相似文献   

4.
电离层垂直TEC映射函数的实验观测与统计特性   总被引:2,自引:0,他引:2       下载免费PDF全文
利用GPS信标测量获得的电离层电子浓度总含量(TEC)是沿电波路径的斜向TEC.理论研究和实际应用中,常常需要通过映射函数将斜向TEC转换为垂直方向的TEC,这在当前主要采用对电子浓度分布模型的数值积分得到模型映射函数来实现.本文在考察现有不同模型映射函数的基础上,又提出了一种源于实际观测的实验映射函数的概念与估算方法.我们利用IGS的全球GPS观测站的斜向TEC和JPL提供的垂直TEC数据获得了2006年期间的实验映射函数,并对所得结果进行了初步统计分析.在卫星天顶角较小时,上述实验映射函数和模型映射函数之间相差甚微,均可很好描述垂直TEC与斜TEC之间关系;但卫星天顶角较大时,实验映射函数和常用的模型映射函数之间存在明显差异.本文认为,这种差异主要是因为现有模型映射函数中没有考虑到等离子体层的贡献.我们认为采用基于实验映射函数的模式,或者通过考虑等离子体层的贡献对现有模型映射函数进行改进,可以有效提高电离层TEC的估算精度.  相似文献   

5.
Continuous monitoring of ionospheric conditions is essential to monitoring and forecasting space weather. The worldwide use of global navigation satellite systems like the Gobal Positioning System (GPS) makes it possible to continuously monitor the total electron content (TEC) of the ionosphere and plasmasphere up to a height of about 20,000 km. We have developed a system for deriving the TEC from GEONET data rapidly and we use the TEC distribution over Japan in the daily operations of the Space Weather Forecast Center at NICT (RWC Tokyo of ISES). Using instrumental biases from a few days before enables us to drastically shorten the processing time for deriving TEC. The latest TEC values (with a delay of about 1 h) are obtained every 3 h, and most of the values are within 2 TEC units of the actual TEC. We have found our system for deriving TEC rapidly to be useful for continuously monitoring the progress of ionospheric storms under any ionospheric conditions, even those under which the usual ionosonde observations are unable to obtain F-region profiles.  相似文献   

6.
The existence of a worldwide international GPS service (IGS) permanent network of dual-frequency receivers makes the computation of global ionospheric maps (GIMs) of total electron content (TEC) feasible. The GIMs computed by the IGS Associate Analysis Centers on a daily basis and by other kinds of forecast GIMs, which can be computed from, for instance, the international reference ionosphere (IRI) model, and the GPS broadcast models in the navigation message, can be applied to a broad diversity of fields, for instance as, navigation and time transfer.In this context, the performance of different kinds of models are presented in order to determine the accuracy of the different GIM. This is carried out by comparison with the TOPEX data that provides an independent and precise (at the level of few TECU) vertical TEC determination over the oceans and seas. Thus, the obtained accuracies, in terms of global relative error, ranging from 54% corresponding to the GPS broadcast model, to about 41% corresponding to IRI climatological model, and to less than 30% corresponding to GPS data driven models.  相似文献   

7.
In this paper, we investigate the solar flare effects of the ionosphere at middle latitude with a one-dimensional ionosphere theoretical model. The measurements of solar irradiance from the SOHO/Solar EUV Monitor (SEM) and GOES satellites have been used to construct a simple time-dependent solar flare spectrum model, which serves as the irradiance spectrum during solar flares. The model calculations show that the ionospheric responses to solar flares are largely related to the solar zenith angle. During the daytime most of the relative increases in electron density occur at an altitude lower than 300 km, with a peak at about 115 km, whereas around sunrise and sunset the strongest ionospheric responses occur at much higher altitudes (e.g. 210 km for a summer flare). The ionospheric responses to flares in equinox and winter show an obvious asymmetry to local midday with a relative increase in total electron content (TEC) in the morning larger than that in the afternoon. The flare-induced TEC enhancement increases slowly around sunrise and reaches a peak at about 60 min after the flare onset.  相似文献   

8.
This paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the International GNSS Service (IGS) network. For the analysis of the ionospheric effects of the 26 September 2005 Peru earthquake, Global Ionospheric Maps (GIMs) of TEC were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. In previous days, during the evening and night hours (local time—LT), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. Additional measurements (CHAMP satellite) have also confirmed the presence of this structure. To compare the vertical TEC measurements obtained with GPS satellite signals (GPS TEC), the International Reference Ionosphere, IRI-2001, was used for calculating the IRI TEC.  相似文献   

9.
The total electron content (TEC) is a key ionospheric parameter for various space weather applications. Over the last decade an extensive database of TEC measurements has become available from both space- and ground-based observations, and these measurements have established the general morphology of the global TEC distributions. In particular, the TOPEX TEC measurements have shown strong longitudinal variations of TEC in addition to the observed day-to-day variabilities. To better understand the observed TEC variations and to better guide its modeling, we have studied the sensitivity of quiet-time TEC to the following key atmospheric and ionospheric parameters: neutral density, neutral wind, plasma temperatures, plasmaspheric flux, and the O+–O collision frequency. These parameters are often only roughly known and can cause large uncertainties in model results. For this study, we have developed a numerical mid-latitude ionospheric model, which solves the momentum and continuity equations for the O+ density and a simplified set of equations for the H+ density. To obtain TEC, the calculated ion densities have been integrated from the bottom altitude (100 km) to the altitude of the TOPEX satellite (1336 km). Our study shows that during the day the neutral wind and the neutral composition have the most important effect on TEC. In particular, the zonal component of the neutral wind can have a large effect on TEC in the southern hemisphere where the magnetic declination angle is large. During the night, most of the above-mentioned parameters can play a significant role in the TEC morphology, except for the plasma temperature, which has only a small effect on TEC. Finally, the TEC varies roughly linearly with respect to all of the parameters except for the neutral wind.  相似文献   

10.
国际GNSS服务组织全球电离层TEC格网精度评估与分析   总被引:11,自引:1,他引:10       下载免费PDF全文
国际GNSS服务组织(International GNSS Services,IGS)发布的全球电离层TEC格网(Global lonospheric Map,GIM)是利用GNSS进行电离层研究的主要数据源之一.IGS电离层工作组于2016年2月正式授予中国科学院为全球第五个电离层数据分析中心,由测量与地球物理研究所和光电研究院联合实施.本文系统地总结和展示了IGS电离层工作组对各分析中心GIM评估的结果;此次评估以基准站实测电离层TEC、测高卫星电离层TEC为参考,给出了各分析中心1998-2015年GIM的总体性能.结果显示:随着IGS基准站日益增多,各分析中心GIM内符合精度由4.5~7.0TECu提升至2.5-3.5TECu;不同分析中心GIM一致性从3.0~4.5TECu提升至2.0~3.5TECu;相对于测高卫星电离层数据,CODE、CAS、JPL和UPC分析中心的GIM精度相对较高(约4.0~4.5TECu),但是在不同测高卫星评估结果之间存在不同的系统性偏差.  相似文献   

11.
The TOPEX-POSEIDON oceanographic satellite (due to be launched in 1992) will proceed to high accuracy altimetric measurements of the sea surface. Since the altimeter signals will propagate through the ionosphere, they will be retarded with respect to their free-space propagation delay. As a result, the measured altitude will exhibit an apparent lengthening which must be considered. In order to correct this effect, the ionosphere total electron content (TEC) beneath the satellite has to be known. This paper addresses the problem of determining the TEC form Doppler measurements performed on telemetric signals propagating between the satellite and the ground stations of the DORIS positioning system. This is an inverse problem which, in general, does not admit a single-valued solution. Physical observations of the ionophere lead us to assume that the TEC along each half-revolution is regular such that we can select an appropriate solution. This solution is approximated by cubic splines. The computed results are compared to simulation results, based on the Bent ionospheric model and seem to be particularly promising.  相似文献   

12.
利用GPS计算TEC的方法及其对电离层扰动的观测   总被引:36,自引:8,他引:28  
在总结用GPS研究电离层电子总量TEC的数据处理方法基础上,分析了利用伪距观测量和载波相位观测量计算电离层TEC的特点及误差来源.在处理过程中考虑了卫星的硬件延迟偏差,分析了应用IRI模型进行接收机硬件延迟偏差修正的可能性,发现利用少量GPS数据和IRI模型修正接收机硬件延迟偏差有一定的困难.最后,利用一些GPS观测数据有针对性地研究了电离层对若干次扰动事件的响应.包括一次大的太阳耀斑期间的电离层TEC变化、一次较典型的电离层行扰以及日食期间的电离层TEC的相对变化等电离层物理问题.结果表明,利用该方法计算TEC的精度可满足电离层扰动现象的研究.  相似文献   

13.
With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February–April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.  相似文献   

14.
在基于GPS数据提取电离层总电子含量(TEC)的过程中,电离层薄壳高度的选择对解算电离层垂直TEC的精度有很大的影响.但由于不可能获得一个真实的从电离层D层到GPS卫星高度的电子密度剖面,关于电离层薄壳高度的选择一直是基于GPS数据解算电离层TEC方法中关注的一个问题.本文利用等离子体GCPM模型,对太阳活动高年(2002)和太阳活动低年(2008)情况下电离层有效薄壳高度的选择进行了仿真计算.结果表明,最佳的薄壳高度在2002年为560 km,而在2008年为695 km.通过对全球八个具有代表性地点的仿真计算,揭示了有效薄壳高度更复杂的变化特点.在白天,最佳薄壳的高度变化不大(500 km至750 km);但在夜晚,最佳薄壳高度变化范围很大,甚至可以超过2000 km.此外,本文还对不同卫星仰角的情况下斜向TEC转换为垂直TEC的误差进行了分析,结果表明:随着卫星仰角的增加,薄壳模型带来的转换误差基本上是单调减少的.因而,在实际应用中,尽可能地采用大仰角的卫星数据有助于提高解算的电离层垂直TEC的精度.最后,对全球不同地点的电离层TEC的仿真研究表明,在电子密度水平梯度较大的地区,应用电离层薄壳模型时会导致电子密度较高处的TEC被高估,而电子密度较低处的TEC被低估,在分析基于GPS数据提取的电离层TEC空间变化时要认识到这一点.  相似文献   

15.
电离层TEC卡尔曼滤波成像研究   总被引:2,自引:2,他引:0       下载免费PDF全文
随着太空探测技术的进步,对TEC(Total Electron Content,简称TEC)探测精度要求越来越高.本文利用COSMOS 2414卫星数据资料获得观测TEC,在电离层NeQuick模型下,得到电离层电子密度,并使用卡尔曼滤波算法反演电子密度,最后结合电离层测高仪数据对实验结果进行判定.结果发现利用卡尔曼滤波反演信标资料算法,可以获得可靠的二维电子密度场.  相似文献   

16.
The earlier experiments of ionospheric tomography were conducted by receiving satellite signals from ground-based stations and then reconstructing electron density distribution from measures of the total electron content (TEC). In June 1994, National Central University built up the low-latitude ionospheric tomography network (LITN) including six ground stations spanning a range of 16.7° (from 14.6°N to 31.3°N) in latitude within 1° of 121°E longitude to receive the naval navigation satellite system (NNSS) signals (150 and 400 MHz). In the study of tomographic imaging of the ionosphere, TEC data from a network of ground-based stations can provide detailed information on the horizontal structure, but are of restricted utility in sensing vertical structure. However, an occultation observation mission termed the global positioning system/meteorology (GPS/MET) program used a low Earth orbiting (LEO) satellite (the MicroLab-1) to receive multi-channel GPS carrier phase signals (1.5 and 1.2 GHz) and demonstrate active limb sounding of the Earth's atmosphere and ionosphere. In this paper, we have implemented the multiplicative algebraic reconstruction technique (MART) to reconstruct and compare two-dimensional ionospheric structures from measured TECs through the receptions of the GPS signals, the NNSS signals, and/or both of the systems. We have also concluded the profiles retrieved from tomographic reconstruction showing much reasonable electron density results than the original vertical profiles retrieved by the Abel transformation and being in more agreement in peak electron density to nearby ionosonde measurements.  相似文献   

17.
Variations of the upper boundary of the ionosphere (UBI) are investigated based on three sources of information: (i) ionosonde-derived parameters: critical frequency foF2, propagation factor M3000F2, and sub-peak thickness of the bottomside electron density profile; (ii) total electron content (TEC) observations from signals of the Global Positioning System (GPS) satellites; (iii) model electron densities of the International Reference Ionosphere (IRI*) extended towards the plasmasphere. The ionospheric slab thickness is calculated as ratio of TEC to the F2 layer peak electron density, NmF2, representing a measure of thickness of electron density profile in the bottomside and topside ionosphere eliminating the plasmaspheric slab thickness of GPS-TEC with the IRI* code. The ratio of slab thickness to the real thickness in the topside ionosphere is deduced making use of a similar ratio in the bottomside ionosphere with a weight Rw. Model weight Rw is represented as a superposition of the base-functions of local time, geomagnetic latitude, solar and magnetic activity. The time-space variations of domain of convergence of the ionosphere and plasmasphere differ from an average value of UBI at ∼1000 km over the earth. Analysis for quiet monthly average conditions and during the storms (September 2002, October–November 2003, November 2004) has shown shrinking UBI altitude at daytime to 400 km. The upper ionosphere height is increased by night with an ‘ionospheric tail’ which expands from 1000 km to more than 2000 km over the earth under quiet and disturbed space weather. These effects are interposed on a trend of increasing UBI height with solar activity when both the critical frequency foF2 and the peak height hmF2 are growing during the solar cycle.  相似文献   

18.
The morphology of averaged diurnal variations of total electron content (TEC) under quiet helio-geomagnetic conditions for all latitudinal bands and various longitudes has been studied using Global Ionospheric Maps (GIMs) datasets. The diurnal TEC variation maximum is generally registered at 14–15 LT. The maximum is 38±5, 14±2, 10±2 TECU (TECU is generally accepted TEC unit) at the equatorial, middle and high latitudes. The nighttime TEC minimum is within 5–7 TECU regardless of a season, latitude and longitude. At the equatorial latitudes TEC exhibits the most significant daily/season variations and the asymmetry of its behavior in the hemispheres near the equinox. Abnormal diurnal TEC variations (evening maximum, near-noon minimum) are observed at middle and high latitudes in summer due to atmospheric wind effects. The comparison of the averaged diurnal TEC variations with the behavior of the ionospheric F2-layer critical frequency indicated that GIMs describe daily/annual TEC variations reasonably well.  相似文献   

19.
基于GNSS(Global Navigation Satellite Systems)的发展,我们利用具有北斗、GLONASS和GPS三系统信号接收功能的接收机观测的数据,结合电离层总电子含量(Total Electron Content, TEC)的反演算法,提取出GNSS三系统观测的电离层TEC;同时,将GNSS三系统获取的TEC应用到电离层TEC地图、行进式扰动、不规则体结构和电离层的太阳耀斑响应等方面的研究中,这也是首次使用三种GNSS系统数据对电离层进行联合探测研究.研究结果表明,增加了北斗系统的GNSS三系统在研究中国地区电离层TEC地图、周日变化、逐日变化,行进式扰动以及电离层的实时监测等方面较单系统的GPS具有明显的优势.  相似文献   

20.
利用GPS监测电离层不均匀结构探讨   总被引:7,自引:0,他引:7       下载免费PDF全文
利用上海地区GPS综合应用网提供的高时空分辨率的双频GPS观测资料,研究了该区域内一电离层不均匀体的产生、消亡过程.首先,采用Kalman滤波的方法改善双频伪距之差的观测精度,并利用参数估计的方法计算该时段内相应的硬件延迟.再根据电离层单层模型,利用GPS双频观测量、测站位置和GPS精密星历,求出GPS信号穿刺点的坐标和垂直方向电离层的电子含量;然后内插并获取其等值线图.等值线图随时间的变化表明,受等离子体湍流的影响,2003年9月8日北京时间9时40分左右在38°N、118°E左右产生了一电离层不均匀体,其尺度大约在50km左右,生存时间大约为5min.受地球重力场和高空风场的影响,该不均匀体向东北方向扩散.然后,利用大气扩散模型,按扩散方程计算分析了该不均匀体可能发生的电离层层区.理论计算表明,该不均匀体发生在电离层扩展F区,高度在350km左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号