首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The method for estimating an ionospheric index of solar-activity (IISA) based on the processing of spacecraft radio signals is suggested. The IISA values have been obtained by comparison between the measured and calculated variations of radio-signal characteristics. To calculate the variations of radio-signal characteristics, the straight rays approximation and the solar-activity index (Wolf numbers W and/or values of F10.7 solar flux) as a control parameter of the ionospheric model have been used. The suggested method was tested using spacecraft radio signals from the radio-navigation system “CIKADA”. The reduced differences of phases (ΔΦ) for frequencies 150 and 400 MHz were measured and the same characteristics were calculated by integration along the ray of radio-wave propagation between the receiver and the satellite. The IRI-95 has been used as a background ionospheric model. The satellite co-ordinates were determined using the orbit parameters recorded in the navigation messages. Minimization of the difference measured and calculated ΔΦ using arbitrary time steps, or during whole time intervals of observation, gives the IISA corresponding the satellite pass. Daily IISA values were obtained by averaging over all communication contacts during a day (20–30 passes). Testing this approach based on the measurements during March/April 1997, 1998, shows that on magnetically quiet days differences between IISA and the primary solar activity indices are about 5%.  相似文献   

2.
On October 12, 2013, an earthquake with Mw = 6.5 occurred in the southern Hellenic Arc, approximately 20 km off the west coast of Crete. The main shock, the focal depth of which is on the order of 40 km, was followed by aftershocks felt in the nearby cities and villages, although the aftershock sequence was poor. The epicentre was located at approximately 60 km from a radio receiver in Crete (CRE), which belongs to the European VLF/LF Radio Network. Several days before the earthquake, a clear disturbance occurred in one of the ten radio signals that the CRE receiver sampled. The disturbance, which can be considered an anomaly, appeared in the 216 kHz radio signal radiated by the Radio Monte Carlo (MCO) transmitter. The radio path MCO-CRE crossed directly over the epicentre area of the aforementioned earthquake. In this work, we present a detailed analysis of the MCO signal anomaly using spectral tools. We also investigate the behaviour of other radio signals sampled by the CRE receiver and consider other possible causes of disturbances on the MCO radio signal. We conclude that the disturbance in the MCO radio signal is a convincingly possible precursor of the earthquake in Crete. Emission of electromagnetic waves with a frequency band that includes 216 kHz from the focal zone of the earthquake can provide a satisfactory explanation of the radio anomaly.  相似文献   

3.
The measurements of variations in the total electron content of the Earth’s ionosphere along the GPS satellite signal propagation path are described. The signal parameters were measured at a network of receivers at three distant sites: Sura (Vasilsursk), Zelenodolsk, and Kazan. They are arranged along the geomagnetic latitude of the Sura Facility under short-wave radio irradiation of the ionosphere. One feature of the experiment is the crossing of a disturbed region by the radio path between a GPS satellite and Vasilsursk. This resulted from the angular sizes of the Sura array pattern; the radio paths between a GPS satellite and Zelenodolsk and a GPS satellite and Kazan did not cross. Variations in the total electron content of up to 0.15?0.3 TECU were revealed at all three sites during four experimental campaigns (March 2010, March 2013, May 2013, and November 2013). The lateral scale of an ionospheric disturbance stimulated by a high-power radio wave and the velocity of its west-to-east propagation along the geomagnetic latitude were 30–60 km and 270–350 m/s, respectively. A decrease in the total electron content (down to 0.55 TECU) was recorded along the Kazan–Zelenodolsk–Vasilsurks line, which is connected with the solar terminator transit; the lateral scale of the related ionospheric inhomogeneities was ~65–80 km.  相似文献   

4.
Relative variations in the critical frequency of the ionospheric F, region are considered as one of the main sources of information about the characteristics of plasma inhomogeneities in the region of the main ionization maximum and as a substantial factor responsible for the statistics of the decameter signal parameters on radio paths with different lengths. The functions defined on finite intervals are also used in statistical modeling in addition to the available methods. Such a consideration made it possible to remove a restriction, peculiar to previous models, in the form of the requirement that the fourth statistical invariant—excess— should be positive. This makes the generalized statistical model more universal, which is of special importance for high4atitude radio paths. The specified mo del more adequately corresponds to the experimental data, which are characterized by finite intervals where the quantities are measured.  相似文献   

5.
6.
An analysis of the key parameters of HF/UHF radio signals was carried out for land-satellite radio channels, which determine the effects of fading in a perturbed ionosphere. Using the parameters of the perturbed plasma, the effects of the absorption and phase fluctuations of radio signals are analyzed for a channel with fading. For the evaluation of the effect of scattering of a radio signal by ionospheric inhomogeneities in an approximation of small-scale scintillations, expressions for the root-mean-square (RMS) magnitude of signal intensity and phase scintillations are presented. Scintillation index σ I 2 that corresponds to variations in a signal under the conditions of multipath propagation with fading is investigated by using experimental data. It is shown that roughly ~10% of inhomogeneities of the electron concentration in the F region of the ionosphere, perturbed during a magnetic storm, yield strong quickly fading radio signals in the VHF/UHF range with significant fluctuations (up to 1%) in the intensity of the signal and phase fluctuations (up to hundreds of radians). The calculated magnitudes of the scintillation index are in good agreement with experimentally observed data.  相似文献   

7.
Based on recent advances in ionospheric storm dynamics that correlate the ionospheric storm effects with space weather parameters such as the magnitude of the interplanetary magnetic field (IMF), its rate of change and the IMF's orientation in the north–south direction and on the availability of these parameters in real time by NASA ACE spacecraft from the vantage L1 point, an empirical storm-time ionospheric model for the middle latitude ionosphere, namely STIM, was recently envisaged. STIM is significantly upgraded and validated here. The model introduces a correction factor to the quiet daily ionospheric variation to anticipate storm conditions. It is triggered by an alert signal for upcoming ionospheric disturbances obtained from the analysis of the IMF measurements provided by ACE spacecraft. In its final version, STIM method includes quantitative criteria for the online analysis of the ACE's observations. The determination of the ionospheric storm onset and the empirical formulation of the ionospheric storm-time response, both in terms of the local time and the latitude of the observation point are also specified here. STIM's forecasts are provided from 13 to 45 h ahead for any middle latitude ionospheric location. Validation tests carried out for 27 storm-time intervals and for four European locations show that the model captures successfully the onset and the recovery of the ionospheric disturbance and follows sufficiently the disturbance pattern, providing also significant improvement over climatology during storm days. STIM was also compared with two well-known prediction models, the IRI2001 and the GCAM, and the findings demonstrate improved performance in favour of STIM, in both quantitative and qualitative aspect. In general, the results presented here support the efficiency of the proposed methodology in providing reliable ionospheric forecasts at middle latitudes several hours in advance. The operational implementation of STIM can support ionospheric forecasting space weather services and is based on the availability of real-time IMF observations from the vantage L1 point.  相似文献   

8.
With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February–April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.  相似文献   

9.
New ionospheric activity indices are derived from automatically scaled online data from several European ionosonde stations. These indices are used to distinguish between normal ionospheric conditions expected from prevailing solar activity and ionospheric disturbances caused by specific solar and atmospheric events (flares, coronal mass ejections, atmospheric waves, etc.). The most reliable indices are derived from the maximum electron density of the ionospheric 2-layer expressed by the maximum critical frequency foF 2. Similar indices derived from ionospheric M(3000)2 values show a markedly lower variability indicating that the changes of the altitude of the 2-layer maximum are proportionally smaller than those estimated from the maximum electron density in the 2-layer. By using the ionospheric activity indices for several stations the ionospheric disturbance level over a substantial part of Europe (34°N–60°N; 5°W–40°E) can now be displayed online.  相似文献   

10.
The usual practice in optical dating is to derive an equivalent dose (De) (and hence age) from integration of the initial part of the measured optically stimulated luminescence (OSL) signal. This ‘bulk’ OSL signal is known to comprise several semi-independent components, each of which decays at different rates during measurement, and thus contributes a different proportion to the bulk signal as measurement time progresses. Data are presented here which show a strong dependence of De on the bulk signal integration interval, with reduced De for later signal integration intervals resulting from lower medium component De values. This dependence leads to two problems: (i) deciding which signal integral to choose, and (ii) the possibility that all bulk signals will provide systematic age underestimation due to medium component signal contributions. Isolating the fast component of the bulk OSL signal provides a solution to both problems and several methods of achieving this are assessed; an efficient new method is described which is incorporated in to standard single-aliquot regenerative-dose measurement sequences. This method involves the direct measurement of the fast-component signal using infrared (830 nm) stimulation of quartz at 160 °C, prior to the standard bulk OSL measurement with 470 nm stimulation. It is shown that the measured quartz infrared stimulated luminescence signals resolve pure fast-component signals and provide De estimates consistent with those from signal deconvolution. This approach can only be applied to samples with relatively bright luminescence emissions, but in these cases is expected to provide a more robust estimate of palaeodose.  相似文献   

11.
Global magnetohydrodynamic (MHD) simulations of the Earths magnetosphere must be coupled with a dynamical ionospheric module in order to give realistic results. The usual approach is to compute the Reld-aligned current (FAC) from the magnetospheric MHD variables at the ionospheric boundary. The ionospheric potential is solved from an elliptic equation using the FAC as a source term. The plasma velocity at the boundary is the E × B velocity associated with the ionospheric potential. Contemporary global MHD simulations which include a serious ionospheric model use this method, which we call the electrostatic approach in this paper. We study the possibility of reversing the flow of information through the ionosphere: the magnetosphere gives the electric Reld to the ionosphere. The Reld is not necessarily electrostatic, thus we will call this scheme electromagnetic. The electric Reld determines the horizontal ionospheric current. The divergence of the horizontal current gives the FAC, which is used as a boundary condition for MHD equations. We derive the necessary formulas and discuss the validity of the approximations necessarily involved. It is concluded that the electromagnetic ionosphere-magnetosphere coupling scheme is a serious candidate for future global MHD simulators, although a few problem areas still remain. At minimum, it should be investigated further to discover whether there are any differences in the simulation using the electrostatic or the electromagnetic ionospheric coupling.  相似文献   

12.
We report first results from a unique experiment performed at the HIPAS ionospheric modification facility in conjunction with the Poker Flat incoherent scatter radar in Alaska. High-power radio waves at 2.85 MHz, which corresponds to the second electron gyro-harmonic at ~245 km altitude, were transmitted into the nighttime ionosphere. Clear evidence of F-region ionospheric electron temperature enhancements were found, for the first time at this pump frequency, maximizing when the pump frequency is close to the second gyro-harmonic and double resonance. This is consistent with previous pump-enhanced artificial optical observations. We estimate the plasma heating efficiency to be approximately double that for higher pump frequencies.  相似文献   

13.
Real time kinematic, or RTK, is a high-accuracy GPS relative positioning technique, which allows to measure positions in real time with an accuracy usually better than 1 decimeter. Ionospheric small-scale variability can strongly degrade RTK accuracy. In this paper, we present a method allowing to assess in a direct quantitative way the influence of the ionospheric activity on RTK accuracy. We apply this method to two different ionospheric situations: a day where strong travelling ionospheric disturbances (TIDs) were detected (December 24, 2004) and a day where a severe geomagnetic storm was observed (November 20, 2003). We show that on a 4 km baseline, strong TIDs have the same influence as the ionospheric variability induced by a geomagnetic storm on RTK accuracy: in both cases errors of more than 1.5 m are observed.  相似文献   

14.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

15.
The paper discusses how the trajectory calculation method can be used to solve the problem of locality determination of shortwave (SW) emission sources. The dependence of the electron concentration on the coordinates is specified using the SPIM model; it is corrected using the ionospheric solar activity index, which is specified with the help of maps of total electron content. We suggested a variant of how a regional map of the total electron content can be plotted according to measurements of signals from GLONASS/GPS navigation systems. It is shown that the trajectory calculation method, coupled with an adjustable ionospheric model, allows for a more exact locality determination of SW radio emission sources.  相似文献   

16.
Studying the processes generating different-scale inhomogeneities is one of the challenging problems of ionospheric physics. Plasma instabilities are one of the physical mechanisms by which small-scale inhomogeneities are formed. The main forms of instability in the ionospheric E-layer are two-stream and gradient-drift ones. The inhomogeneities generated by them lead to an abnormally intense radio scattering of different wavelengths (known as coherent echo (CE) or radio aurora) in the E-layer. Therefore, the method of radiowave backscattering is among the widely used methods for studying such inhomogeneities. The CE phenomenon has been investigated most intensely at high and equatorial latitudes, where the conditions for the CE origination are formed rather regularly. For the last decade, CE has also been intensely studied at midlatitudes, where it is observed less frequently and its formation conditions are less known. In 1998–2006, the purposeful studies of the midlatitude CE peculiarities were performed at the Irkutsk incoherent scatter (IS) radar, with a particular emphasis on its coherent properties. It was for the first time found out that the spectra of some data sets had a fine comb-shaped structure, which generated well-known single-humped CE spectra as a result of statistical averaging. In the scope of this study, unique coherent methods for processing individual data sets of CE signals were developed, making it possible to reveal the peculiarities of unaveraged CE-signal spectra. To describe these peculiarities, we proposed a new model of the inhomogeneity spectrum, which is the superposition of the discrete set of spatial harmonics with close wave numbers. The model was shown to adequately describe the scattered signal characteristics observed experimentally.  相似文献   

17.
The Weimer and IZMEM statistical convection models are driven with a time series of interplanetary magnetic field (IMF) measurements made onboard the Wind spacecraft. The model outputs are used to infer the ionospheric convection velocity at Casey, Antarctica (80.8°S geomagnetic latitude), and then compared with measurements of Doppler velocity made using a Digisonde, and measurements of F-region convection implied by a collocated magnetometer. During a single, representative campaign interval, 13–17 February 1996, the Weimer model explained 19% (42%) of the variation in Doppler speed (direction) observed by the Digisonde, and 21% (14%) of the equivalent convection components observed by the magnetometer. This compares with IZMEM which explained 16% (46%) of the variation in Doppler speed (direction) observed by the Digisonde, and 34% (32%) of the equivalent convection components observed by the magnetometer. In general, there was better agreement between convection direction than convection speed. Some of the disagreement was probably due to differences between the IMF measured by Wind located ∼170 RE upstream in the solar wind and the IMF actually arriving at the magnetopause. However, the results of this study do show that measurements of ionospheric velocity using different experimental techniques need heavy averaging to identify a common component of velocity controlled by the IMF vector. The present time series approach was also used to estimate 16±5 min as the time required for the ionospheric convection to reconfigure in response to IMF changes occurring at the magnetopause.  相似文献   

18.
电离层声重波扰动的高频无线电诊断   总被引:1,自引:1,他引:1  
为了充分发挥现代数字式电离层探测仪在电离层结构与优动研究中的潜力,必须在传统的频高图真高换算的基础上,发展新的反演理论和算法.本文介绍了随时空缓变的各向异性电离层介质中无线电波包传播的广义射线方程组,讨论了计算波包射线几何路径以及计算波包参数,如频移、波矢、群时延等沿射线路径变化的传播正问题,并详细讨论了根据波包参量的测定值反演介质结构和扰动伏态的传播反问题.文中若干实验实例表明,这种反演理论和算法可用于数字式电离层探测仪记录的分析,它使高频无线电波探测技术成为研究全球电离层声重波一类扰动的有力工具。  相似文献   

19.
The outputs of the IRI-2001 and NeQuick ionospheric models are compared with radio tomographic (RT) images of the ionosphere near the crest of the equatorial anomaly (EA) between Manila and Shanghai (about 850 cross sections overall). The values of the slant total electron content measured in an RT experiment as opposed to the corresponding values derived from the IRI-2001 and NeQuick models are analyzed. A comparison of model cross sections and ionosonde measurements revealed discrepancies in the critical frequencies of the ionospheric F2 layer, which were the strongest in the region of high spatial gradients close to the crest of the EA. The specific features of the dynamics of the EA are discussed based on the results of the models and radio tomography. Our analysis has shown that the IRI-2001 and NeQuick models mainly reproduce the “plasma fountain effect” but are incapable of recognizing the stable structural features of the EA observed on RT reconstructions, for example, the daytime orientation of the mature core of the EA parallel to geomagnetic field lines. A method to correct the IRI-2001 and NeQuick models in the vicinity of the EA crest is suggested.  相似文献   

20.
It is shown that besides the known method of topside ionospheric sounding (TS) in the decameter range using low-orbit transit satellites, the same frequency range could be used for ionospheric diagnostics, but using geostationary satellites by the method of multifrequency radio transillumination (MRT). The trajectory and energetic features related to the application of this method in the direct problem of transionospheric sounding of the ionosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号