首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the impact of neutral hydrogen (H  i ) in galaxies on the statistics of 21-cm fluctuations using seminumerical modelling. Following the reionization of hydrogen, the H  i content of the Universe is dominated by damped absorption systems (DLAs), with a cosmic density in H  i that is observed to be constant at a level equal to ∼2 per cent of the cosmic baryon density from   z ∼ 1  to   z ∼ 5  . We show that extrapolation of this constant fraction into the reionization epoch results in a reduction in the amplitude of 21-cm fluctuations over a range of spatial scales. We further find that consideration of H  i in galaxies/DLAs reduces the prominence of the H  ii region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21-cm–galaxy cross PS and show that the cross PS changes sign on scales corresponding to the H  ii regions. From consideration of the sensitivity for forthcoming low-frequency arrays, we find that the effects of H  i in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionized first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionization era, providing an alternative avenue to pinpoint the end of reionization. The sum of our analysis indicates that the H  i content of the galaxies that reionize the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.  相似文献   

2.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

3.
Many models of early structure formation predict a period of heating immediately preceding reionization, when X-rays raise the gas temperature above that of the cosmic microwave background. These X-rays are often assumed to heat the intergalactic medium (IGM) uniformly, but in reality will heat the gas more strongly closer to the sources. We develop a framework for calculating fluctuations in the 21-cm brightness temperature that originate from this spatial variation in the heating rate. High-redshift sources are highly clustered, leading to significant gas temperature fluctuations (with fractional variations ∼40 per cent, peaking on   k ∼ 0.1 Mpc−1  scales). This induces a distinctive peak-trough structure in the angle-averaged 21-cm power spectrum, which may be accessible to the proposed Square Kilometre Array. This signal reaches the ∼10 mK level, and is stronger than that induced by Lyα flux fluctuations. As well as probing the thermal evolution of the IGM before reionization, this 21-cm signal contains information about the spectra of the first X-ray sources. Finally, we consider disentangling temperature, density and Lyα flux fluctuations as functions of redshift.  相似文献   

4.
Low-frequency observatories are currently being constructed with the goal of detecting redshifted 21-cm emission from the epoch of reionization. These observatories will also be able to detect intensity fluctuations in the cumulative 21-cm emission after reionization, from hydrogen in unresolved damped Lyα absorbers (such as gas-rich galaxies) down to a redshift z ∼ 3.5. The inferred power spectrum of 21-cm fluctuations at all redshifts will show acoustic oscillations, whose comoving scale can be used as a standard ruler to infer the evolution of the equation of state for the dark energy. We find that the first generation of low-frequency experiments (such as MWA or LOFAR) will be able to constrain the acoustic scale to within a few per cent in a redshift window just prior to the end of the reionization era, provided that foregrounds can be removed over frequency bandpasses of ≳8 MHz. This sensitivity to the acoustic scale is comparable to the best current measurements from galaxy redshift surveys, but at much higher redshifts. Future extensions of the first-generation experiments (involving an order of magnitude increase in the antennae number of the MWA) could reach sensitivities below 1 per cent in several redshift windows and could be used to study the dark energy in the unexplored redshift regime of 3.5 ≲ z ≲ 12. Moreover, new experiments with antennae designed to operate at higher frequencies would allow precision measurements (≲1 per cent) of the acoustic peak to be made at more moderate redshifts (1.5 ≲ z ≲ 3.5), where they would be competitive with ambitious spectroscopic galaxy surveys covering more than 1000 deg2. Together with other data sets, observations of 21-cm fluctuations will allow full coverage of the acoustic scale from the present time out to z ∼ 12.  相似文献   

5.
We explore the ability of measurements of the 21-cm power spectrum during reionization to enable the simultaneous reconstruction of the reionization history and the properties of the ionizing sources. For various sets of simulated 21-cm observations, we perform maximum likelihood fits in order to constrain the reionization and galaxy formation histories. We employ a flexible six-parameter model that parametrizes the uncertainties in the properties of high-redshift galaxies. The computational speed needed is attained through the use of an analytical model that is in reasonable agreement with numerical simulations of reionization. We find that one-year observations, with the Murchison Widefield Array, should measure the cosmic ionized fraction to  ∼1 per cent  accuracy at the very end of reionization, and a few per cent accuracy around the mid-point of reionization. The mean halo mass of the ionizing sources should be measurable to 10 per cent accuracy when reionization is 2/3 of the way through, and to 20 per cent accuracy throughout the central stage of reionization, if this mass is anywhere in the range 1/3 to 100 billion solar masses.  相似文献   

6.
A new generation of radio telescopes are currently being built with the goal of tracing the cosmic distribution of atomic hydrogen at redshifts 6–15 through its 21-cm line. The observations will probe the large-scale brightness fluctuations sourced by ionization fluctuations during cosmic reionization. Since detailed maps will be difficult to extract due to noise and foreground emission, efforts have focused on a statistical detection of the 21-cm fluctuations. During cosmic reionization, these fluctuations are highly non-Gaussian and thus more information can be extracted than just the one-dimensional function that is usually considered, i.e. the correlation function. We calculate a two-dimensional function that if measured observationally would allow a more thorough investigation of the properties of the underlying ionizing sources. This function is the probability distribution function (PDF) of the difference in the 21-cm brightness temperature between two points, as a function of the separation between the points. While the standard correlation function is determined by a complicated mixture of contributions from density and ionization fluctuations, we show that the difference PDF holds the key to separately measuring the statistical properties of the ionized regions.  相似文献   

7.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

8.
The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization ( E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization history, within the framework of inhomogeneous reionization. Since the E -mode polarization reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift, which is probed by the 21-cm line fluctuations. The peak reaches its maximum value in redshift when the average ionization fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionization. Thus, the cross-correlation between the CMB polarization and the 21-cm line fluctuations has the potential to accurately constrain the epoch and the duration of reionization.  相似文献   

9.
We study the statistical properties of the cosmological 21-cm signal from both the intergalactic medium (IGM) and minihaloes, using a reionization simulation that includes a self-consistent treatment of minihalo photoevaporation. We consider two models for minihalo formation and three typical thermal states of the IGM – heating purely by ionization, heating from both ionizing and Lyα photons and a maximal 'strong heating' model. We find that the signal from the IGM is almost always dominant over that from minihaloes. In our calculation, the differential brightness temperature,  δ T b,  of minihaloes is never larger than 2 mK. Although there are indeed some differences in the signals from the minihaloes and from the IGM, even with the planned generation of radio telescopes it will be unfeasible to detect them. However, minihaloes significantly affect the ionization state of the IGM and the corresponding 21-cm flux.  相似文献   

10.
It has recently been suggested that the power spectrum of redshifted 21 cm fluctuations could be used to measure the scale of baryonic acoustic oscillations (BAOs) during the reionization era. The resulting measurements are potentially as precise as those offered by the next generation of galaxy redshift surveys at lower redshift. However, unlike galaxy redshift surveys, which in the linear regime are subject to a scale-independent galaxy bias, the growth of ionized regions during reionization is thought to introduce a strongly scale-dependent relationship between the 21 cm and mass power spectra. We use a seminumerical model for reionization to assess the impact of ionized regions on the precision and accuracy with which the BAO scale could be measured using redshifted 21 cm observations. For a model in which reionization is completed at   z ∼ 6  , we find that the constraints on the BAO scale are not systematically biased at   z ≳ 6.5  . In this scenario, and assuming the sensitivity attainable with a low-frequency array comprising 10 times the collecting area of the Murchison Widefield Array, the BAO scale could be measured to within 1.5 per cent in the range  6.5 ≲ z ≲ 7.5  .  相似文献   

11.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

12.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   

13.
Observations of damped Lyα absorbers (DLAs) indicate that the fraction of hydrogen in its neutral form (H  i ) is significant by mass at all redshifts. This gas represents the reservoir of material that is available for star formation at late times. As a result, observational identification of the systems in which this neutral hydrogen resides is an important missing ingredient in models of galaxy formation. Precise identification of DLA host mass via traditional clustering studies is not practical owing to the small numbers of known systems being spread across sparsely distributed sightlines. However, following the completion of re-ionization, 21-cm surface brightness fluctuations will be dominated by neutral hydrogen in DLAs. No individual DLAs could be detected in 21-cm emission. Rather, observations of these fluctuations will measure the combined clustering signal from all DLAs within a large volume. We show that measurement of the spherically averaged power spectrum of 21-cm intensity fluctuations due to DLAs could be used to measure the galaxy bias for DLA host galaxies when combined with an independent measurement of the cosmological H  i mass density from quasar absorption studies. Utilizing this technique, the low-frequency arrays now under construction could measure the characteristic DLA host mass with a statistical precision as low as 0.3 dex at z ≳ 4. In addition, high signal-to-noise ratio observations of the peculiar-motion-induced anisotropy of the power spectrum would facilitate measurement of both the DLA host mass and the cosmic H  i density directly from 21-cm fluctuations. By exploiting this anisotropy, a second generation of low-frequency arrays with an order of magnitude increase in collecting area could measure the values of cosmic H  i density and DLA host mass, with uncertainties of a few per cent and a few tens of per cent, respectively.  相似文献   

14.
We study the effect of a prolonged epoch of reionization on the angular power spectrum of the cosmic microwave background. Typically reionization studies assume a sudden phase transition, with the intergalactic gas moving from a fully neutral to a fully ionized state at a fixed redshift. Such models are at odds, however, with detailed investigations of reionization, which favour a more extended transition. We have modified the code cmbfast to allow the treatment of more realistic reionization histories and applied it to data obtained from numerical simulations of reionization. We show that the prompt reionization assumed by cmbfast in its original form heavily contaminates any constraint derived on the reionization redshift. We find, however, that prompt reionization models give a reasonable estimate of the epoch at which the mean cosmic ionization fraction was ≈50 per cent, and provide a very good measure of the overall Thomson optical depth. The overall differences in the temperature (polarization) angular power spectra between prompt and extended models with equal optical depths are less than 1 per cent (10 per cent).  相似文献   

15.
The brightness temperature fluctuations in the 21-cm background related to the neutral hydrogen distribution provide a probe of the physics related to the era of reionization, when the intergalactic medium changed from being completely neutral to partially ionized. We formulate statistics of 21-cm brightness temperature anisotropies in terms of the angular power spectrum, the bispectrum, and the trispectrum. Using the trispectrum, we estimate the covariance related to the power spectrum measurements and show that correlations resulting from non-Gaussianities are below a per cent, at most. While all-sky observations of the 21-cm background at arcminute-scale resolution can be used to measure the bispectrum with a cumulative signal-to-noise ratio of the order of a few tens, in the presence of foregrounds and instrumental noise related to first-generation interferometers, the measurement is unlikely to be feasible. For most purposes, non-Gaussianities in 21-cm fluctuations can be ignored and the distribution can be described with Gaussian statistics. Because 21-cm fluctuations are significantly contaminated by foregrounds, such as galactic synchrotron or low-frequency radio point sources, the lack of significant non-Gaussianity in the signal suggests that any significant detection of non-Gaussianity could be the result of foregrounds. Similarly, in addition to the frequency information that is now proposed to separate 21-cm fluctuations from foregrounds, if the non-Gaussian structure of foregrounds is known a priori, this additional information could potentially be used to reduce the confusion further.  相似文献   

16.
17.
The first-year Wilkinson Microwave Anisotropy Probe data suggest a high optical depth for Thomson scattering of  0.17 ± 0.04  , implying that the Universe was reionized at an earlier epoch than previously expected. Such early reionization is likely to be caused by ultraviolet (UV) photons from first stars, but it appears that the observed high optical depth can be reconciled within the standard structure formation model only if star formation in the early Universe was extremely efficient. With normal star formation efficiencies, cosmological models with non-Gaussian density fluctuations may circumvent this conflict as high density peaks collapse at an earlier epoch than in models with Gaussian fluctuations. We study cosmic reionization in non-Gaussian models and explore to what extent, within available constraints, non-Gaussianities affect the reionization history. For mild non-Gaussian fluctuations at redshifts of 30 to 50, the increase in optical depth remains at a level of a few per cent and appears unlikely to aid significantly in explaining the measured high optical depth. On the other hand, within available observational constraints, increasing the non-Gaussian nature of density fluctuations can easily reproduce the optical depth and may remain viable in underlying models of non-Gaussianity with a scale-dependence.  相似文献   

18.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

19.
Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153 MHz to characterize the statistical properties of the background radiation across ∼1° to subarcmin angular scales, and across a frequency band of 5 MHz with 62.5 kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum   C l   . We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency   V 2( U , 0)  . From our observations, we find that   V 2( U , 0)  is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies  κ( U , Δν)  seems to be much more sensitive to calibration errors. We find a rapid decline in  κ( U , Δν)  , in contrast with the prediction of less than 1 per cent variation across 2.5 MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号