首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The first part of this paper demonstrated the existence of bias in GCM-derived precipitation series, downscaled using either a statistical technique (here the Statistical Downscaling Model) or dynamical method (here high resolution Regional Climate Model HadRM3) propagating to river flow estimated by a lumped hydrological model. This paper uses the same models and methods for a future time horizon (2080s) and analyses how significant these projected changes are compared to baseline natural variability in four British catchments. The UKCIP02 scenarios, which are widely used in the UK for climate change impact, are also considered. Results show that GCMs are the largest source of uncertainty in future flows. Uncertainties from downscaling techniques and emission scenarios are of similar magnitude, and generally smaller than GCM uncertainty. For catchments where hydrological modelling uncertainty is smaller than GCM variability for baseline flow, this uncertainty can be ignored for future projections, but might be significant otherwise. Predicted changes are not always significant compared to baseline variability, less than 50% of projections suggesting a significant change in monthly flow. Insignificant changes could occur due to climate variability alone and thus cannot be attributed to climate change, but are often ignored in climate change studies and could lead to misleading conclusions. Existing systematic bias in reproducing current climate does impact future projections and must, therefore, be considered when interpreting results. Changes in river flow variability, important for water management planning, can be easily assessed from simple resampling techniques applied to both baseline and future time horizons. Assessing future climate and its potential implication for river flows is a key challenge facing water resource planners. This two-part paper demonstrates that uncertainty due to hydrological and climate modelling must and can be accounted for to provide sound, scientifically-based advice to decision makers.  相似文献   

2.
This paper investigates the uncertainty in the impact of climate change on flood frequency in England, through the use of continuous simulation of river flows. Six different sources of uncertainty are discussed: future greenhouse gas emissions; Global Climate Model (GCM) structure; downscaling from GCMs (including Regional Climate Model structure); hydrological model structure; hydrological model parameters and the internal variability of the climate system (sampled by applying different GCM initial conditions). These sources of uncertainty are demonstrated (separately) for two example catchments in England, by propagation through to flood frequency impact. The results suggest that uncertainty from GCM structure is by far the largest source of uncertainty. However, this is due to the extremely large increases in winter rainfall predicted by one of the five GCMs used. Other sources of uncertainty become more significant if the results from this GCM are omitted, although uncertainty from sources relating to modelling of the future climate is generally still larger than that relating to emissions or hydrological modelling. It is also shown that understanding current and future natural variability is critical in assessing the importance of climate change impacts on hydrology.  相似文献   

3.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

4.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

5.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

6.
In order to perform hydrological studies on the PRUDENCE regional climate model (RCM) simulations, a special focus was put on the discharge from large river catchments located in northern and central Europe. The discharge was simulated with a simplified land surface (SL) scheme and the Hydrological Discharge (HD) model. The daily fields of precipitation, 2 m temperature and evapotranspiration from the RCM simulations were used as forcing. Therefore the total catchment water balances are constrained by the hydrological cycle of the different RCMs. The validation of the simulated hydrological cycle from the control simulations shows that the multi-model ensemble mean is closer to the observations than each of the models, especially if different catchments and hydrological variables are considered. Therefore, the multi-model ensemble mean can be used to largely reduce the uncertainty that is introduced by a single RCM. This also provides more confidence in the future projections for the multi-model ensemble means. The scenario simulations predict a gradient in the climate change signal over Northern and Central Europe. Common features are the overall warming and the general increase of evapotranspiration. But while in the northern parts the warming will enhance the hydrological cycle leading to an increased discharge, the large warming, especially in the summer, will slow down the hydrological cycle caused by a drying in the central parts of Europe which is accompanied by a reduction of discharge. The comparison of the changes predicted by the multi-model ensemble mean to the changes predicted by the driving GCM indicates that the RCMs can compensate problems that a driving GCM may have with local scale processes or parameterizations.  相似文献   

7.
This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000–2009, 2046–2065 and 2081–2100, using the period of 1962–1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000–2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.  相似文献   

8.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

9.
Strategic-scale assessments of climate change impacts are often undertaken using the change factor (CF) methodology whereby future changes in climate projected by General Circulation Models (GCMs) are applied to a baseline climatology. Alternatively, statistical downscaling (SD) methods apply climate variables from GCMs to statistical transfer functions to estimate point-scale meteorological series. This paper explores the relative merits of the CF and SD methods using a case study of low flows in the River Thames under baseline (1961–1990) and climate change conditions (centred on the 2020s, 2050s and 2080s). Archived model outputs for the UK Climate Impacts Programme (UKCIP02) scenarios are used to generate daily precipitation and potential evaporation (PE) for two climate change scenarios via the CF and SD methods. Both signal substantial reductions in summer precipitation accompanied by increased PE throughout the year, leading to reduced flows in the Thames in late summer and autumn. However, changes in flow associated with the SD scenarios are generally more conservative and complex than that arising from CFs. These departures are explained in terms of the different treatment of multidecadal natural variability, temporal structuring of daily climate variables and large-scale forcing of local precipitation and PE by the two downscaling methods.  相似文献   

10.
The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.  相似文献   

11.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   

12.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

13.
The current study examines the recently proposed “bias correction and stochastic analogues” (BCSA) statistical spatial downscaling technique and attempts to improve it by conditioning coarse resolution data when generating replicates. While the BCSA method reproduces the statistical features of the observed fine data, this existing model does not replicate the observed coarse spatial pattern, and subsequently, the cross-correlation between the observed coarse data and downscaled fine data with the model cannot be preserved. To address the dissimilarity between the BCSA downscaled data and observed fine data, a new statistical spatial downscaling method, “conditional stochastic simulation with bias correction” (BCCS), which employs the conditional multivariate distribution and principal component analysis, is proposed. Gridded observed climate data of mean daily precipitation (mm/day) covering a month at 1/8° for a fine resolution and at 1° for a coarse resolution over Florida for the current and future periods were used to verify and cross-validate the proposed technique. The observed coarse and fine data cover the 50-year period from 1950 to1999, and the future RCP4.5 and RCP8.5 climate scenarios cover the 100-year period from 2000 to 2099. The verification and cross-validation results show that the proposed BCCS downscaling method serves as an effective alternative means of downscaling monthly precipitation levels to assess climate change effects on hydrological variables. The RCP4.5 and RCP8.5 GCM scenarios are successfully downscaled.  相似文献   

14.
The current body of research in western North America indicates that water resources in southern Alberta are vulnerable to climate change impacts. The objective of this research was to parameterize and verify the ACRU agro-hydrological modeling system for a small watershed in southern Alberta and subsequently simulate the change in future hydrological responses over 30-year simulation periods. The ACRU model successfully simulated monthly streamflow volumes (r 2?=?0.78), based on daily simulations over 27 years. The delta downscaling technique was used to perturb the 1961?C1990 baseline climate record from a range of global climate model (GCM) projections to provide the input for future hydrological simulations. Five future hydrological regimes were compared to the 1961?C1990 baseline conditions to determine the average net effect of change scenarios on the hydrological regime of the Beaver Creek watershed over three 30-year time periods (starting in 2010, 2040 and 2070). The annual projections of a warmer and mostly wetter climate in this region resulted in a shift of the seasonal streamflow distribution with an increase in winter and spring streamflow volumes and a reduction of summer and fall streamflow volumes over all time periods, relative to the baseline conditions (1961?C1990), for four of the five scenarios. Simulations of actual evapotranspiration and mean annual runoff showed a slight increase, which was attributed to warmer winters, resulting in more winter runoff and snowmelt events.  相似文献   

15.
This study presents a method to incorporate uncertainty of climate variables in climate change impact assessments, where the uncertainty being considered refers to the divergence of general circulation model (GCM) projections. The framework assesses how much bias occurs when the uncertainties of climate variables are ignored. The proposed method is based on the second-order expansion of Taylor series, called second-order approximation (SOA). SOA addresses the bias which occurs by assuming the expected value of a function is equal to the function of the expected value of the predictors. This assumption is not valid for nonlinear systems, such as in the case of the relationship of climate variables to streamflow. To investigate the value of SOA in the climate change context, statistical downscaling models for monthly streamflow were set up for six hydrologic reference stations in Australia which cover contrasting hydro-climate regions. It is shown that in all locations SOA makes the largest difference for low flows and changes the overall mean flow by 1–3%. Another advantage of the SOA approach is that the individual contribution of each climate variable to the total difference can be estimated. It is found that geopotential height and specific humidity cause more bias than wind speeds in the downscaling models considered here.  相似文献   

16.
A new method is proposed to estimate future net basin supplies and lake levels for the Laurentian Great Lakes based on GCM projections of global climate change. The method first dynamically downscales the GCM simulation with a regional climate model, and then bias—corrects the simulated net basin supply in order to be used directly in a river—routing/lake level scheme. This technique addresses two weaknesses in the traditional approach, whereby observed sequences of climate variables are perturbed with fixed ratios or differences derived directly from GCMs in order to run evaporation and runoff models. Specifically, (1) land surface—atmosphere feedback processes are represented, and (2) changes in variability can be analyzed with the new approach. The method is demonstrated with a single, high resolution simulation, where small changes in future mean lake levels for all the upper Great Lakes are found, and an increase in seasonal range—especially for Lake Superior—is indicated. Analysis of a small ensemble of eight lower resolution regional climate model simulations supports these findings. In addition, a direct comparison with the traditional approach based on the same GCM projections used as the driving simulations in this ensemble shows that the new method indicates smaller declines in level for all the upper Great Lakes than has been reported previously based on the traditional method, though median differences are only a few centimetres in each case.  相似文献   

17.
The potential impact of climate warming on patterns of malaria transmission has been the subject of keen scientific and policy debate. Standard climate models (GCMs) characterize climate change at relatively coarse spatial and temporal scales. However, malaria parasites and the mosquito vectors respond to diurnal variations in conditions at very local scales. Here we bridge this gap by downscaling a series of GCMs to provide high-resolution temperature data for four different sites and show that although outputs from both the GCM and the downscaled models predict diverse but qualitatively similar effects of warming on the potential for adult mosquitoes to transmit malaria, the predicted magnitude of change differs markedly between the different model approaches. Raw GCM model outputs underestimate the effects of climate warming at both hot (3-fold) and cold (8–12 fold) extremes, and overestimate (3-fold) the change under intermediate conditions. Thus, downscaling could add important insights to the standard application of coarse-scale GCMs for biophysical processes driven strongly by local microclimatic conditions.  相似文献   

18.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

19.
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions.  相似文献   

20.
Future climate projections and impact analyses are pivotal to evaluate the potential change in crop yield under climate change. Impact assessment of climate change is also essential to prepare and implement adaptation measures for farmers and policymakers. However, there are uncertainties associated with climate change impact assessment when combining crop models and climate models under different emission scenarios. This study quantifies the various sources of uncertainty associated with future climate change effects on wheat productivity at six representative sites covering dry and wet environments in Australia based on 12 soil types and 12 nitrogen application rates using one crop model driven by 28 global climate models (GCMs) under two representative concentration pathways (RCPs) at near future period 2021–2060 and far future period 2061–2100. We used the analysis of variance (ANOVA) to quantify the sources of uncertainty in wheat yield change. Our results indicated that GCM uncertainty largely dominated over RCPs, nitrogen rates, and soils for the projections of wheat yield at drier locations. However, at wetter sites, the largest share of uncertainty was nitrogen, followed by GCMs, soils, and RCPs. In addition, the soil types at two northern sites in the study area had greater effects on yield change uncertainty probably due to the interaction effect of seasonal rainfall and soil water storage capacity. We concluded that the relative contributions of different uncertainty sources are dependent on climatic location. Understanding the share of uncertainty in climate impact assessment is important for model choice and will provide a basis for producing more reliable impact assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号