首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three hundred and thirty new 13C analyses of diamonds are presented, indicating, in conjunction with earlier published work, a range of about 30%. in the carbon isotopic composition of diamonds. The frequency distribution of diamond δ13C analyses shows a very pronounced mode at ?5 to ?6%.vs PDB, a large negative skewness, and a sharp boundary at about ?1%.. Analyses of diamonds from the Premier and Dan Carl mines, South Africa, demonstrate that: (1) differences in 13C content that can be related to diamond color and shape are smaller than 1%.; (2) the mean 13C content of kimberlite carbonates is 1–2%. lower than that of associated diamonds; (3) significant differences in 13C content exist between the mean isotopic compositions of diamonds from these two pipes; (4) the variability in δ13C differs from one mine to the other.Computations were carried out evaluating the effect on the 13C content of diamonds of: (i) various precipitation processes; (ii) the abundance of the species H2, H2O, CH4, CO, CO2 and O2 in the vapor; (iii) the initial isotopic composition variability of the source carbon; (iv) variations of the carbon isotope effects resulting from changes in pressure and temperature and (v) reservoir effects (Rayleigh fractionation). Fifty-eight genetic models were investigated for compatibility with the 13C distribution in diamonds and associated carbonate. The modeling does not permit an unambiguous answer to the question whether or not a vapor participated in diamond formation, although the presence of methane during diamond formation is compatible with the carbon isotopic composition data, possible oxygen fugacities in the mantle and with the composition of gases liberated from diamonds. In all probability carbon isotope effects in the diamond formation process were small, and the very large range in δ13C observed was inherited from the source carbon.  相似文献   

2.
The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine δ18O = 5.64‰ is higher than that of olivine in mantle peridotites (δ18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition δ18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the δ18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose δ18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.  相似文献   

3.
New carbon and oxygen isotopic compositions of carbonates from 14 carbonatite and 11 kimberlite occurrences are reported. A review of the available data on the carbon isotopic composition ranges of carbonatite and kimberlite carbonates shows that they are similar and overlap that of diamonds. The mean carbon isotopic composition of carbonates from 22 selected carbonatite complexes (?5.1%., s = ±l.4%.vsPDB) is indistinguishable from that of 13 kimberlite pipes (?4.7%. s = ±1.2%.) as well as that of 60 individual diamond analyses (?5.8%., s = 1.8%.). The oxygen isotopic compositions of kimberlite carbonates, however, are enriched in O18 by several permil with respect to those of carbonates from the subvolcanic type of carbonatite.The data suggest that not all carbonatite, kimberlite and diamond occurrences have the same average carbon isotopic composition and that significant differences exist between them. Carbon isotopic composition measurements available for the East African Rift system suggest geographic and/or tectonic groupings e.g. carbonate lavas, tuffs and intusive carbonatites associated with the Eastern Rift yield a range of δC13 values from ?5.8 to ?7.4%., similar to that of the carbonate rocks associated with the Western Rift volcanism (?5.8 to ?7.9%.). In contrast the interrift area encompassing Lakes Victoria, Malawi (Nyasa) and Chilwa, apparently are characterized by carbonatitic carbonates of higher C13 content (?2.4 to ?4.4%.).If carbonatite and kimberlite carbonates as well as diamonds represent deep seated carbon, the mean isotopic composition of this carbon is estimated as ?5.2%. and the range is ?2 to ?8%. The selection of any particular value within this range to be used as a criterion of deep-seated origin is at the moment not warranted. Indeed, the choice of any specific composition for such carbon may be meaningless, as the source of kimberlite, carbonatite and diamond carbon may not be isotopically uniform.  相似文献   

4.
《Applied Geochemistry》1991,6(5):477-494
In the past decade, the isotopic compositions of C in > 600 inclusion-bearing diamonds have been determined. Such analyses have revealed the following isotopic characteristics: (1) peridotitic diamonds, which typically contain garnet, chromite, olivine and/or orthopyroxene inclusions with refractory compositions (high Mg, Cr), have δ13C values predominantly between −10 and −1‰, with a sharp peak in the distribution near −5‰; (2) eclogitic diamonds, which commonly contain inclusions of omphacitic clinopyroxene, Cr-poor pyrope, and/or eclogitic accessory minerals such as rutile, kyanite, coesite or sanidine, have δ13C values between −34 and +3‰, with a smaller peak near −5‰; (3) the isotopic compositions obtained for suites of diamonds from individual occurrences are, in general, unique and do not resemble the range and distribution obtained by amalgamating the diamond isotope data from a number of localities; (4) isotopic zoning patterns and heterogeneities are found in some diamonds; cores of coated diamonds tend to be depleted in13C relative to the rims, and within single octahedral diamonds δ13C variations of nearly 6‰ have been reported.Because expected C isotope fractionations at mantle temperatures are small, attempts to model the full range of diamond isotope values through fractionating a homogeneous mantle C source have been unsuccessful. Nevertheless, fractionation is probably responsible for some of the observed variation in δ13C values. Two other models have also been proposed to account for the diamond characteristics outlined above. The “primordial model” suggests that the range and distribution of C isotope compositions are inherited from primordial C in the mantle which has an inhomogeneous isotopic composition, such as that found in meteorites. The “subduction model” suggests that subducted, crustal C is the source of C in diamonds, as organic and inorganic C compounds in the crust exhibit a range of δ13C values similar to that observed in diamonds. This paper reviews the C isotope characteristics of diamonds and compares the models which have been proposed to explain the origins of these characteristics.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(11-12):1825-1836
Oxygen isotope data have been obtained for silicate inclusions in diamonds, and similar associated minerals in peridotitic and eclogitic xenoliths from the Finsch kimberlite by laser-fluorination. Oxygen isotope analyses of syngenetic inclusions weighing 20–400 μg have been obtained by laser heating in the presence of ClF3. 18O/16O ratios are determined on oxygen converted to CO2 over hot graphite and, for samples weighing less than 750 μg (producing <12 μmoles O2) enhanced CO production in the graphite reactor causes a systematic shift in both δ13C and δ18O that varies as a function of sample weight. A “pressure effect” correction procedure, based on the magnitude of δ13C (CO2) depletion relative to δ13C (graphite), is used to obtain corrected δ18O values for inclusions with an accuracy estimated to be ±0.3‰ for samples weighing 40 μg.Syngenetic inclusions in host diamonds with similar δ13C values (−8.4‰ to −2.7‰) have oxygen isotope compositions that vary significantly, with a clear distinction between inclusions of peridotitic (+4.6‰ to +5.6‰) and eclogitic paragenesis (+5.7‰ to +8.0‰). The mean δ18O composition of olivine inclusions is indistinguishable from that of typical peridotitic mantle (5.25 ± 0.22‰) whereas syngenetic purple garnet inclusions possess relatively low δ18O values (5.00 ± 0.33‰). Reversed oxygen isotope fractionation between olivine and garnet in both diamond inclusions and diamondiferous peridotite xenoliths suggests that garnet preserves subtle isotopic disequilibrium related to genesis of Cr-rich garnet and/or exchange with the diamond-forming fluid. Garnet in eclogite xenoliths in kimberlite show a range of δ18O values from +2.3‰ to +7.3‰ but garnets in diamondiferous eclogites and as inclusions in diamond all have values >4.7‰.  相似文献   

6.
The paper reports the results obtained by the detailed studying of carbonado (the first find in a gold placer in Primorie) and a collection of diamonds that was confiscated in 1937 from a poaching small digger and was kept safe at the Nezametnyi mine (near the village of Vostretsovo), which had developed this placer deposit. In the concentrate from the placer, carbonado is associated with green corundum, various ilmenite, zircon titanian amphiboles and pyroxenes, rutile, anatase, and fragments of subvolcanic biotite picrites. All of these minerals, native aluminum, and tin occur as inclusions in the diamonds. The carbonado from Primorie was determined to be practically identical to this mineral from Brazil, has a porous structure, is characterized by orange luminescence, contains inclusions of Y, Ce, La, Ba, and Sr phosphates, and has an isotopically light composition of its carbon (13C from ?25 to ?32‰). Pores of the carbonado aggregates contain clusters of diamond crystals. The collection of diamonds from an unknown source included six gem-quality transparent crystals, one rounded ballas, two cuboctahedral crystals (one of greenish and the other of silver-gray color, both with outer coats), and one black carbonado grain. The data obtained on the mineralogy of the diamonds have demonstrated that they are completely identical to this mineral from kimberlites and lamproites but bear traces of intense dissolution, fragmentation, multiple recrystallization, and graphitization at defects, which are the most widespread in the ballas. One of the crystals was determined to contain inclusions: aggregates of potassic omphacite (0.50 wt % K2O) and corundum. Ilmenite (containing up to 8 wt % MgO), titanaugite, kaersutite (4 wt % TiO2, 0.8 wt % K2O), and churchite (aqueous phosphate) were obtained from the core of the ballas. The titanaugite, kaersutite, and ilmenite were proven to be compositionally analogous to these minerals from picrites occurring near the placer. The carbon isotopic composition δ13C of the cores of the single diamond crystals varies from ?6 to ?11‰. The margins of the grains were proved to be enriched in the light carbon isotope (δ13C from ?19 to ?21‰). The gem-quality transparent diamond crystals are characterized by blue luminescence, and the color of luminescence in the carbonado varies from orange red in the bulk of the aggregate to yellowish green in its core. The aforementioned transformations of diamonds were likely caused by their transportation in pipes of micaceous picrites of the Jurassic meymechite complex. The carbonado are thought to correspond to the final stage of the metastable recrystallization (in pores, within the temperature range of the rutile-anatase transition) of the original isotopically heavy diamonds under the effect of various oxidizers (H2O, CO2, F, and others) and in the presence of catalytically acting REE, Ti, and P. The primary diamond source (kimberlite or lamproite) can be older and more distant from the study area. The complete geological analogy between the study area in Primorie, Kalimantan Island in Indonesia, and West Australia (where no sources of the placers are known) led us to consider the territory of Primorie as promising for exploration for diamondiferous placers.  相似文献   

7.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

8.
Here, we compare nitrogen aggregation characteristics and carbon isotopic compositions in diamonds from Mesoproterozoic (T1) and Jurassic (U2) kimberlites in the Attawapiskat area—the first diamond-producing area on the Superior craton. The T1 kimberlite sampled diamonds from the lithospheric mantle at 1.1 Ga, at the same time as the major Midcontinent Rift event. These diamonds have a narrow range in δ13C (mode of ?3.4 ‰), with compositions that overlap other diamond localities on the Superior craton. Some diamond destruction must have occurred during the Mesoproterozoic in response to the thermal impact of the Midcontinent Rift—the associated elevated geotherm caused a narrow diamond window (<30 km) close to the base of the lithosphere, compared to a wide diamond window of ~85 km following thermal relaxation (sampled by Jurassic kimberlites, such as U2). T1 diamonds have highly aggregated nitrogen, possibly due to the thermal effect of the rift. Diamond-favourable conditions were re-established in the lithospheric mantle after the thermal impact of the Midcontinent Rift dissipated. The poorly aggregated nature of nitrogen in U2 diamonds—compared to highly aggregated nitrogen in diamonds from T1—indicates that renewed diamond formation must have occurred only after the thermal impact of the Midcontinent Rift at 1.1 Ga had subsided and that these newly formed diamonds were subsequently sampled by Jurassic kimberlites. The overall δ13C distribution for U2 diamonds is distinct to T1 and other Superior diamonds, further suggesting that U2 diamonds are not related to the older pre-rift diamonds.  相似文献   

9.
He Pozanti‐Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro‐diamonds were recovered from the podiform chromitites, and these were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed‐habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds ranges between ?18.8 ‰ and ?28.4 ‰, with a principle δ13C mode at ?25 ‰. Nitrogen contents of the diamonds range from 7 to 541 μg/g with a mean value of 171 μg/g, and the δ15N values range from ?19.1 ‰ to 16.6 ‰, with a δ15N mode of ?9 ‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo‐alloy and nano‐size, quenched fluid phases were observed as inclusions in the PKO diamonds, confirming a natural origin of these diamonds. We believe that the δ13C‐depleted carbon signature of the PKO diamonds is a remnant of previously subducted crustal matter. These diamonds may have crystallized in metal‐rich melts in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts/fliuds. We concluded that diamond‐bearing asthenospheric melts were likely involved in the formation of the Pozanti‐Karsanti podiform chromitite.  相似文献   

10.
Microdiamonds (crystals smaller than 1 mm) of octahedral and cubic habit from Udachnaya kimberlite pipe (Yakutia) have been compared in order to distinguish genetic features inferred from carbon isotopic composition and impurity defects. Microdiamonds of cubic habit from the Udachnaya kimberlite pipe have a fibrous internal structure and a high content of nitrogen impurity (400–3000 ppm). Octahedral microdiamonds from the same deposit are distinguished by a low nitrogen content of 0 to 500 ppm and zoning structure. The isotopic composition of carbon (δ13C is –4.7‰ for octahedra and –4.5‰ for cuboids) suggests a common source of carbon for these morphologic groups. The studied characteristics can be due to crystallization of octahedra from carbon dissolved in the melt, and cuboids, under the conditions of the hampered diffusion of carbon.  相似文献   

11.
The spatial distribution of carbon and nitrogen isotopes and of nitrogen concentrations is studied in detail in three gem quality cubic diamonds of variety II according to Orlov’s classification. Combined with the data on composition of fluid inclusions our results point to the crystallization of the diamonds from a presumably oxidized carbonate fluid. It is shown that in the growth direction δ13C of the diamond becomes systematically lighter by 2–3‰ (from –13.7 to –15.6‰ for one profile and from –11.7 to –14.1‰ for a second profile). Simultaneously, we observe substantial decrease in the nitrogen concentration (from 400–1000 to 10–30 at ppm) and a previously unrecognized enrichment of nitrogen in light isotope, exceeding 30‰. The systematic and substantial changes of the chemical and isotopic composition can be explained using the Burton-Prim-Slichter model, which relates partition coefficients of an impurity with the crystal growth rate. It is shown that changes in effective partition coefficients due to a gradual decrease in crystal growth rate describes fairly well the observed scale of the chemical and isotopic variations if the diamond-fluid partition coefficient for nitrogen is significantly smaller than unity. This model shows that nitrogen isotopic composition in diamond may result from isotopic fractionation during growth and not reflect isotopic composition of the mantle fluid. Furthermore, it is shown that the infra-red absorption at 1332 сm-1 is an integral part of the Y-defect spectrum. In the studied natural diamonds the 1290 сm-1 IR absorption band does not correlate with boron concentration.  相似文献   

12.
Noncarbonate (combustion) and carbonate (acid decomposition) carbon were separately analyzed in 18 granitic rocks from a group of related Tertiary intrusions near Crested Butte, Colorado, and 14 mafic and ultramafic rocks from various localities in the western United States. Among the granites, carbonate carbon ranges from nil to 0.76 per cent with δC13-values from ?5.6 to ? 9.0‰ (vs PDB); noncarbonate carbon varies from 32–360 ppm with δC13-values from ?19.7 to ?26.6‰, The mafic and ultramafic rocks have carbonate carbon contents ranging from 53 ppm to about 2 per cent with δC13-values from + 2.9 to ?10.3‰; noncarbonate carbon varies from 26 to 150 ppm with δC13-values of ?22.2 to ? 27.l‰ For these samples, carbonate carbon ranges from 12.0 to 29.4‰ heavier than coexisting noncarbonate carbon. This consistent difference between δC13 of carbonate and noncarbonate carbon may be an isotopic fractionation effect. Because the specific indigenous form of noncarbonate (combustion) carbon is in doubt, conclusive interpretations regarding isotopic equilibration and fractionation cannot be made.These results have bearing on the assessment of the isotopic composition of mantle carbon and consequently are germane to the question of the origin (source) and history of crustal carbon. If mantle carbon is isotopically similar to noncarbonate (combustion) carbon, i.e. δC13-values from ?19.7 to ? 27.1‰, then a simple mantle degassing source for crustal carbon is improbable. Such a result would indicate an additional source of crustal carbon such as from a primitive atmosphere or extra-terrestrial accretion.  相似文献   

13.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

14.
A study of the isotopic composition of plankton from Woods Hole Harbor was conducted to investigate seasonal variation in carbon and nitrogen stable isotopes in a shallow coastal environment. Stable isotopic ratios of carbon and nitrogen both showed temporal variation on the scale of weeks to months, with heaviest (most positive) values in summer to fall for both isotopes. Particulate organic matter (POM) δ13C values were highest (?19‰ to ?21‰) in August to November and lower (?21‰ to ?25‰) at other times of the year, while δ13N-POM values were highest (9.5‰ to 12‰) in March to September and lower (7.5‰ to 9.5‰) at other times of the year. Stable isotopic values were significantly correlated with temperature, DI13C, and C∶N ratios, but not with [DIC], [POC], [PN], [chlorophyll], or the taxonomic composition of the phytoplankton. There was no direct evidence of allochthonous inputs of carbon and nitrogen to the system. Woods Hole δ13C values were virtually identical to Georges Bank plankton values; similar POC: Chlorophyll and C∶N ratios in the two systems further suggest that Woods Hole Harbor is principally a marine system. The high δ13C values of net plankton (>20 μm) during summer and early fall are consistent with a smaller degree of photosynthetic isotopic fractionation at that time, related to temperature and/or [CO2(aq)]. This pattern was not seen, however, in total POM. Plankton δ13N values were higher in Woods Hole Harbor than on Georges Bank, especially during warmer periods, possibly due to high rates of nitrification and organic matter recycling in Woods Hole waters. Relatively wide ranges of stable isotopic values from both Woods Hole Harbor and Georges Bank suggest that seasonality should be considered when attempting to establish endmember C and N isotopic values for temperate marine plankton. Preliminary results from size-fractionated samples suggest that cyanobacteria may fractionate carbon isotopes to a greater degree than net phytoplankton.  相似文献   

15.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

16.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

17.
浙江长兴二叠系和三叠系界限地层的碳同位素   总被引:15,自引:0,他引:15       下载免费PDF全文
研究海相碳酸盐岩的碳和氧同位素已有三十多年,积累了数千个数据,其目的在于研究古海洋碳和氧同位素的演变。在此期间,一部分研究者认为,海相碳酸盐岩的δ13C值在0±2范围内变化,未表现出与地质时代相关的变化趋势(Clayton和Degens,1959;Degens和Epstein,1962;Keith和Weber,1964;Galimov,1965;Becker和Clayton,1972;Schidlowski等,1975)。但是,另一些学者,如Jeffery等(1955),Baertschi(1975),Compston(1960),Weber(1967),Garrels和Parry(1974)却认为,海相碳酸盐岩的δ13C值随地质时代而有规律地变化。  相似文献   

18.
Organic carbon isotope composition was studied in the sedimentary cover of the southern Siberian Platform and its surrounding fold systems. The rocks experienced catagenesis, metamorphism, and metasomatism. The chloroform bitumoid (CB) has a stable carbon isotope composition within a wide range of postsedimentation transformations. The average values of δ13C in CB of the sedimentary cover are ?29.5‰. Metamorphism and, especially, ore metasomatism, at the Sukhoi Log deposit caused a 2‰ increase in the heavy carbon isotope concentration of CB as compared to that of the platform deposits. The narrow variations in carbon isotope composition of the bitumoid are defined by their derivation from lipids, whose components are almost insusceptible to changes in the PT conditions. Kerogen from platform deposits is more strongly depleted than CB in the heavy carbon isotope (δ13Cav ? 32.2‰). The insoluble carbonaceous matter (ICM) of the metamorphic shales is significantly enriched in the heavy carbon isotope (δ13Cav ? 21.9‰). The highest changes in carbon isotope composition were found in concentrates of ICM from metasomatically altered rocks of the Sukhoi Log deposit (δ13Cav ? 17.5‰). The heavier carbon isotope composition caused by metamorphism and metasomatism is evidently defined by isotopic exchange between the carbonate carbon and CO2 of metasomatic solutions, on one hand, and ICM of shales, on the other.  相似文献   

19.
The isotopic composition of calcite from travertine deposits of the Tokhana-Verkhnii hot spring in the Elbrus area shows broad variations in δ13C and δ18O (from +3.8 to +16.3‰ and from +24.6 to +28.1‰, respectively). The δ13C and δ18O values increase toward the sole of the travertine dome. The isotopically heaviest carbonates (δ13C of up to +16.3‰) were found near the bottom of the dome and composed ancient travertine, which are now not washed by mineral water. The scatter of the δ13C values of the fresh sample is slightly narrower: from +3.8 to +10‰. Calculations indicate that all carbonates of the Tokhana dome were not in equilibrium with spontaneous carbon dioxide released by the spring (\(\delta ^{13} C_{CO_2 } \) = ?8‰). To explain the generation of isotopically heavy travertine, a physicochemical model was developed for precipitation of Ca carbonates during the gradual degassing of the mineral water. The character of variations in the calculated δ13C values (from +5.5 to +13‰) is in good agreement with the tendency in the variations of the δ13C in the carbonate samples. The calculated and measured pH values are also consistent. Our results demonstrate that the isotopic composition of large travertine masses can be heterogeneous, and this should be taken into account during paleoclimatic and paleohydrogeological reconstruction.  相似文献   

20.
We report new δ13C ‐values data and N‐content and N‐aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray‐Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have δ13C ‐PDB‐values ranging from ‐28.7‰ to ‐16.9‰, and N‐contents from 151 to 589 atomic ppm. The δ13C and N‐content values for diamonds from the Luobusa chromitites are ‐29‰ to ‐15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray‐Iz chromitites show values varying from ‐27.6 ‰ to ‐21.6 ‰ in δ13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N‐contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced δ13C ‐variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N‐aggregation state and N‐content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号