首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the LAT capabilities for pulsar science, a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package (PulsarSpectrum) is presented here. Starting from photon distributions in energy and phase obtained from theoretical calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. We present how simulations can be used for generating a realistic set of gamma-rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.  相似文献   

2.
In this contribution we present our preliminary investigation on pulsar sensitivity of the Large Area Telescope, the main instrument aboard the GLAST mission. In particular we concentrated our attention to pulsars located at low galactic latitudes. We created a set of simulated pulsars having different fluxes in an array of galactic coordinates separated by a distance greater than the LAT Point Spread Function in order to avoid confusion between adjacent sources. Galactic gamma-ray sky background as used during the second LAT Data Challenge (DC2) is also included. We then run an automatic routine for testing periodicity for all the pulsars considering an opportune timing solution. In this way we can obtain a map of the sensitivity of the periodic searches for different fluxes and for various Galactic latitudes. Some assumptions have been made by simulating the pulsar sources, but this study is a first step toward an estimate for pulsed emission sensitivity of the GLAST LAT. The pulsed flux sensitivity profile we generate could also be input to a population synthesis code of Galactic pulsars in order to obtain more accurate predictions of the number of expected pulsar detections by GLAST. On behalf of the GLAST LAT Collaboration.  相似文献   

3.
We present results of our pulsar population synthesis of normal and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ-ray emission from both millisecond and normal pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.   相似文献   

4.
Analysis of the arrival directions of extensive air showers (EASs) detected on the EAS MSU array and the prototype of the EAS-1000 array has revealed a region of enhanced flux of cosmic rays with PeV energies toward the pulsars PSR J1840+5640 and LAT PSR J1836+5925 at a confidence level up to 4.5σ. The first pulsar was discovered almost 30 years ago and is a well-studied old radio pulsar at a distance of 1.7 kpc from the Solar system. The second pulsar belongs to a new class of pulsars discovered by the Fermi Gamma-Ray Observatory whose pulsations are seen neither in the X-ray nor in the radio bands, but only in the gamma-ray energy range (gamma-ray-only pulsars). In our opinion, the existence of a region of enhanced cosmic-ray flux in the data sets obtained on two different arrays suggests that the pulsars can make a noticeable contribution to the flux of Galactic cosmic rays with PeV energies.  相似文献   

5.
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.  相似文献   

6.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

7.
Soon after the discovery of radio pulsars in 1967, the pulsars are identified as strongly magnetic (typically 1012 G) rapidly rotating (∼102− 0.1 Hz) neutron stars. However, the mechanism of particle acceleration in the pulsar magnetosphere has been a longstanding problem. The central problem is why the rotation power manifests itself in both gamma-ray beams and a highly relativistic wind of electron–positron plasmas, which excites surrounding nebulae observed in X-ray. Here we show with a three-dimensional particle simulation for the global axisymmetric magnetosphere that a steady outflow of electron–positron pairs is formed with associated pair sources, which are the gamma-ray emitting regions within the light cylinder. The magnetic field is assumed to be a dipole, and to be consistent, the pair creation rate is taken to be small, so that the model might be applicable to old pulsars such as Geminga. The pair sources are charge-deficient regions around the null surface, and we identify them as the outer gap. The wind mechanism is the electromagnetic induction which brings about fast azimuthal motion and eventually trans-field drift by radiation drag in the close vicinity of the light cylinder and beyond. The wind causes loss of particles from the system. This maintains charge deficiency in the outer gap and pair creation. The model is thus in a steady state, balancing loss and supply of particles. Our simulation implies how the wind coexists with the gamma-ray emitting regions in the pulsar magnetosphere.  相似文献   

8.
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation, muon neutrinos are produced through the Δ-resonance in interactions of pulsar-accelerated ions with its thermal radiation field. High-energy gamma-rays should also be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here, we estimate TeV gamma-ray flux at the Earth from a few nearby young pulsars. When compared with the observations, we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect, we obtain the (revised) event rates at the Earth due to a few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma-ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.  相似文献   

9.
Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-band blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.   相似文献   

10.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


11.
A new model for gamma-ray pulsars presented by Higgins & Henriksen is applied to the cases of the seven known gamma-ray pulsars. Those pulsars that are not presently observed in gamma-rays, but are candidates for observation by the next generation of gamma-ray telescopes, are discussed. The case of millisecond pulsars is discussed, and it is shown that these objects should radiate at detectable levels, in opposition to the predictions of other gamma-ray pulsar models.  相似文献   

12.
The third EGRET catalog contains a large number of unidentified sources. This subset of objects is expected to include known gamma-ray emitters of Galactic origin such as pulsars and supernova remnants, in addition to an extragalactic population of blazars. However, current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. Many theoretically motivated candidate emitters (e.g. clumps of annihilating dark matter particles) have been suggested to account for these detections. We take a new approach to determine to what extent this population is Galactic and to investigate the nature of the possible Galactic component. By assuming that galaxies similar to the Milky Way should host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. We find it is highly improbable that a large number of the unidentified sources are members of a Galactic halo population, but that a distribution of the sources entirely in the disk and bulge is plausible. Finally, we discuss the additional constraints and new insights that GLAST will provide.  相似文献   

13.
Pulsars play a crucial astrophy sical role as highly energetic compact radio, X-ray and gammaray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope(LAT) on board the Fermi Gamma-Ray Space Telescope have high values of magnetic field near the light cylinder, two-three orders of magnitude stronger compared with the magnetic fields of radio pulsars: log B_(lc)(G) are 3.60-3.95 and 1.75 correspondingly. Moreover,their losses of rotational energy are also three orders higher than the corresponding values for the main group of radio pulsars on average: log E(erg s~(-1)) = 35.37-35.53 and 32.64. The correlation between gammaray luminosities and radio luminosities is found. It allows us to select those objects from all sets of known radio pulsars that can be detected as gamma-ray pulsars with high probability. We provide a list of such radio pulsars and propose to search for gamma emission from these objects. On the other hand,the known catalog of gamma-ray pulsars contains some sources which are not currently identified as radio pulsars. Some of them have large values of gamma-ray luminosities and according to the obtained correlation, we can expect marked radio emission from these objects. We give the list of such pulsars and expected flux densities to search for radiation at frequencies 1400 and 111 MHz.  相似文献   

14.
We present results of a population synthesis study of radio-loud and radio-quiet γ-ray pulsars from the Galactic plane and the Gould Belt. The simulation includes the Parkes multibeam pulsar survey, realistic beam geometries for radio and γ-ray emission from neutron stars and the new electron density model of Cordes and Lazio. Normalizing to the number of radio pulsars observed by a set of nine radio surveys, the simulation suggests a neutron star birth rate of 1.4 neutron stars per century in the Galactic plane. In addition, the simulation predicts 19 radio-loud and 7 radio-quiet γ-ray pulsars from the plane that EGRET should have observed as point sources. Assuming that during the last 5 Myr the Gould Belt produced 100 neutron stars, only 10 of these would be observed as radio pulsars with three radio-loud and four radio-quiet γ-ray pulsars observed by EGRET. These results are in general agreement with the recent number of about 25 EGRET error boxes that contain Parkes radio pulsars. Since the Gould Belt pulsars are relatively close by, the selection of EGRET radio-quiet γ-ray pulsars strongly favors large impact angles, β, in the viewing geometry where the off-beam emission from curvature radiation provides the γ-ray flux. Therefore, the simulated EGRET radio-quiet γ-ray pulsars, being young and nearby, most closely reflect the current shape of the Gould Belt suggesting that such sources may significantly contribute to the EGRET unidentified γ-ray sources correlated with the Gould Belt.  相似文献   

15.
We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band. We consider two models: the model with hindered particle escape from the pulsar surface [first suggested by Ruderman and Sutherland (1975)] and the model with free particle escape (Arons 1981; Mestel 1999). In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere is small and their radiation cannot be detected with currently available instruments. At the same time, for Arons' model, both the number of particles and the radiation intensity are high enough for such “extinct” pulsars to be detectable with the GLAST and INTEGRAL satellites.  相似文献   

16.
A total of eight gamma-ray sources are identified with pulsars and these include some of the strongest gamma-ray sources in the sky. About 20 of the unidentified gamma-ray sources are very likely to be associated with currently known pulsars and there is little doubt that many of the others, at least those at low Galactic latitudes, will ultimately be identified with pulsars. How many of these and future gamma-ray detections will be detectable at radio wavelengths depends on the details of the radio and gamma-ray beaming. There is good evidence that the radio beams in young and millisecond pulsars are very wide, implying that most gamma-ray pulsars will be detectable in the radio band.  相似文献   

17.
The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad hoc manner. Thus, no complete and direct comparison with observations of the pulsar population within the Galactic disc has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed typical millisecond pulsar formation process. Results also focus on reproducing the observed     diagram for Galactic pulsars and how this precludes short time-scales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.  相似文献   

18.
脉冲星数据比对分析和可视化系统(PSRDB,URL:http://www.psrdb.net/),由FAST(Five-hundred-meter Aperture Spherical Radio Telescope)早期科学数据中心团队为快速开展脉冲星候选体比对分析和数据管理研发.通过前端数据提交页面,接收和维护来自FAST及其他研究机构的候选体数据.目前,PSRDB已收录自1967年人类发现第1颗脉冲星以来所有公开文献发表的2811颗脉冲星样本,并采集了当前主要巡天项目尚未正式发表的源和候选体,如FAST多科学目标同时扫描巡天(CRAFTS)候选体数据.基于入库基础数据,利用位置、周期、色散等参数进行比对分析,辅助科研工作者在线检索匹配已知星表数据,最后将检索匹配、比对分析结果生成图表供进一步分析.目前,PSRDB已被应用于FAST脉冲星搜寻和候选体数据管理.未来,PSRDB可在新源认证、后随观测、观测计划制定和原始数据处理流程设计等方面提供数据和工具支撑.  相似文献   

19.
The current Cherenkov telescopes together with GLAST are opening up a new window into the physics at work close to black holes and rapidly rotating neutron stars with great breakthrough potential. Very high energy gamma-ray emission up to 10 TeV is now established in several binaries. The radiative output of gamma-ray binaries is in fact dominated by emission above 1–10 MeV. Most are likely powered by the rotational spindown of a young neutron star that generates a highly relativistic wind. The interaction of this pulsar wind with the companion’s stellar wind is responsible for the high energy gamma-ray emission. There are hints that microquasars, accretion-powered binaries emitting relativistic jets, also emit gamma-ray flares that may be linked to the accretion–ejection process. Studying high energy gamma-ray emission from binaries offers good prospects for the study of pulsar winds physics and may bring new insights into the link between accretion and ejection close to black holes.  相似文献   

20.
A survey of the entire southern sky for millisecond and low-luminosity pulsars using the ATNF Parkes radio telescope has now been completed. The survey detected 298 pulsars, of which 101 were previously unknown. The new pulsars include 17 millisecond pulsars. This is the largest sample of both normal and millisecond pulsars detected in any survey. Combining our sample with other recent surveys in the Northern Hemisphere, we present a statistical study of the populations of both normal and millisecond pulsars. We find that the improved statistics allow us to estimate the number and birth-rate of both types of pulsar down to a 400-MHz luminosity limit of 1 mJy kpc2. The local surface densities of potentially observable normal pulsars and millisecond pulsars are both about 30 kpc−2, corresponding to ∼ 30000 potentially observable pulsars of each type in the Galaxy. Once beaming effects are taken into consideration we estimate that the active population of normal pulsars is ∼ 160000. Although there is evidence for flattening of the luminosity function of normal pulsars, this is not evident for millisecond pulsars which probably have a substantial population with luminosities below 1 mJy kpc2. After correcting for beaming effects, we estimate that a normal pulsar is born with a luminosity greater than 1 mJy kpc2 between once every 60 and 330 yr in the Galaxy. The birth-rate of millisecond pulsars is at least 3 × 10−6 yr−1 above the same luminosity limit. Modelling the observed transverse speeds of millisecond pulsars using a dynamical simulation, we find their mean birth velocity to be 130 ± 30 km s−1, significantly lower than that of the normal pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号