首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The correlation between the δ^13C and δ^13C-δ^18O in primary carbonates is affected by several factors such as hydrological balance, total CO2 concentrations, climatic condition and lake productivity. The influence of these factors on the δ^13C-δ^18O correlation may be different on different time scales. In this paper, two different-type lakes in southwestern China, Lake Erhai and Lake Chenghai, are selected to investigate the influence of climatic pattern on the δ^13C-δ^18O correlation and to evaluate the reliability of the δ^13C-δ^18O covariance as an indicator of hydrological closure. The results show that there exists good correlation between the δ^13C and δ^18O in Lake Erhai (overflowing open lake) and in Lake Chenghai (closed lake). This suggests that the δ^13C-δ^18O covariance may be not an effective indicator of hydrological closure for lakes, especially on short time scales. On the one hand, a hydrologically open lake may display covariant δ^13C and δ^18O as a result of climatic influence. The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of the δ^13C-δ^18O covariance in Lake Erhai and Lake Chenghai. On the other hand, a hydrologically closed lake unnecessarily displays covariant trends between δ^13C and δ^18O because of the buffering effect of high CO2 concentration on the δ^13C shift in hyper-alkaline lakes. We should be prudent when we use the covariance between δ^13C and δ^18O to judge the hydrological closure of lake.  相似文献   

2.
The correlation between theδ~(13)C andδ~(18)O in primary carbonates is affected by several factors such as hydrological balance,total CO_2 concentrations,climatic condition and lake productivity. The influence of these factors on theδ~(13)C-δ~(18)O correlation may be different on different time scales.In this paper,two different-type lakes in southwestern China,Lake Erhai and Lake Chenghai,are selected to investigate the influence of climatic pattern on theδ~(13)C-δ~(18)O correlation and to evaluate the reliability of theδ~(13)C-δ~(18)O covariance as an indicator of hydrological closure.The results show that there exists good correlation between theδ~(13)C andδ~(18)O in Lake Erhai (overflowing open lake) and in Lake Chenghai (closed lake).This suggests that theδ~(13)C-δ~(18)O covariance may be not an effective indicator of hydrological closure for lakes,especially on short time scales.On the one hand,a hydrologically open lake may display covariantδ~(13)C andδ~(18)O as a result of climatic influence.The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of theδ~(13)C-δ~(18)O covariance in Lake Erhai and Lake Chenghai.On the other hand,a hydrologically closed lake unnecessarily displays covariant trends betweenδ~(13)C andδ~(18)O because of the buffering effect of high CO_2 concentration on theδ~(13)C shift in byper-alkaline lakes.We should be prudent when we use the covariance betweenδ~(13)C andδ~(18)O to judge the hydrological closure of lake.  相似文献   

3.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

4.
Surface lake sediments,28 from Hoh Xil,24 from northeastern China,99 from Lake Bosten,31 from Ulungur and 26 from Heihai were collected to determine δ13C and δ18O values.Considering the impact factors,conductivity,alkalinity,pH,TOC,C/N and carbonate-content in the sediments,Cl,P,S,and metal element ratios of Mg/Ca,Sr/Ca,Fe/Mn of bulk sediments as environmental variables enable evaluation of their influences on δ13C and δ18O using principal component analysis(PCA) method.The closure and residence time of lakes can influence the correlation between δ13C and δ18O.Lake water will change from fresh to brackish with increasing reduction and eutrophication effects.Mg/Ca in the bulk sediment indicates the characteristic of residence time,Sr/Ca and Fe/Mn infer the salinity of lakes.Carbonate formation processes and types can influence the δ13C–δ18O correlation.δ18O will be heavier from Mg-calcite and aragonite formed in a high-salinity water body than calcite formed in freshwater conditions.When carbonate content is less than 30%,there is no relationship with either δ13C or δ18O,and also none between δ13C and δ18O.More than 30%,carbonate content,however,co-varies highly to δ13C and δ18O,and there is also a high correlation between δ13C and δ18O.Vegetation conditions and primary productivity of lakes can influence the characteristics of δ13C and δ18O,and their co-variance.Total organic matter content(TOC) in the sediments is higher with more terrestrial and submerged plants infilling.In northeastern and northwestern China,when organic matter in the lake sediments comes from endogenous floating organisms and algae,the δ13C value is high.δ13C is in the range of 4‰ to 0‰ when organic matter comes mainly from floating organisms(C/N<6);in the range of 4‰ to 8‰ when organic matter comes from diatoms(C/N=6 to 8);and 8‰ to 4‰ when organic matter comes from aquatic and terrestrial plants(C/N>8).  相似文献   

5.
Lake Xingcuo is a small closed,hard-water lake ,situated on eastern Tibet Plateau.Stable isotope data(δ^18O and δ^13C) from the freshwater snail Gyraulus sibirica(Dunker)in a34 cm long,radioactive isotope-dated sediment core represent the last 200 years of Lake Xingcuo environmental history.Carbon and oxygen isotope ratios in the shells of the freshwater snail bear information on the isotopic composition of the water in which the shells were formed ,which in turn characterizes the climatic conditions prevailing during the snail‘s life span.Whole-shell and incremental growth data were collected from modern and fossil shells from Lake Xingcuo.The δ18^O values of modern shells from Lake Xingcuo are in equilibrium with high δ^13CTDIC.By calibrating δ^18O and δ^13C in the shell Gyraulus sibirica(Dunker)with in-strument-measured data for the period 1954-1992,we found that the δ^18O of the snail shells is an efficient indicator to reveal air temperature in the warmer half year instead of that around the whole year,and that there is a certain positive correlation between index δ^18O and the run-ning average temperature in the warmer half-yiar period.Climatic variability on eastern Tibet Plateau,for the last two centuries,has been successfully inferred from the δ^18O record in freshwater snails in the sediments of Lake Xingcuo.As such,the last 200 years of palaeocli-matic record for this region can be separated into three periods representing oscillations between warming and cooling,which are confirmed by the Guliya ice record on the Tibet Plateau.  相似文献   

6.
Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate  相似文献   

7.
Lake sediments provide archives of various parameters correlative with climatic oscillations such as seasonal temperature and humidity. However, geochemical records from many European and Asian lakes cannot be directly correlated with meteorological data within densely populated areas, because of anthropogenic pollution there. The human impact has greatly increased within the instrumental period of the last 150-200 years. However, the pollution problem is not essential for the mountain lakes of Siberia and Mongolia remote from industrial and agricultural centers. For such lakes a correlation between sedimentological-geochemical (inorganic) parameters and climatic data is correct enough. It is able to estimate any type of transfer functions for quantification of that dependence.  相似文献   

8.
Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ^18O,δ^13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.  相似文献   

9.
Lake Balkhash is the third largest inland lake in Central Asia after the Caspian Sea and the Aral Sea.The Ili River-Balkash Lake Basin resides in the southeastern part of the Republic of Kazakhstan and the western part of China's Ili Prefecture,which belongs to the arid and semi-arid region.In the middle to late 20thcentury,the Ili River-Balkash Lake Basin was affected by climate change and human activities,and the problems of water ecology and water resources became increasingly prominent,which became the focus of attention for China and Kazakhstan.In this study,the water level derived from radar altimeter data,the water surface area extracted from Landsat data,and the temperature and precipitation data in the basin were comprehensively utilised.Data analysis of the time course and correlation of hydrological,meteorological elements in the lake basin,water dynamic changes,and influencing factors of Lake Balkhash was studied.The results show that the cyclical change of regional climate is the main factor affecting the change of lake water,and human activities in the short term can regulate the change of water volume in Lake Balkhash.The research results in this paper can provide a scientific basis for the solution of water disputes in cross-border rivers between China and Kazakhstan.  相似文献   

10.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

11.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

12.
The purpose of the thesis is to analyze the temporal and dimensional distribution of sulfate-reducing bacteria (SRB) groups and quantity in Lake Erhai. In April and September 2005, two sediment cores were collected from Lake Erhai. SRB groups were analyzed by PCR with six-groups primers designed according to the specific 16SrDNA sequence. FISH (fluorescence in-situ hybridization) was established with the oligonucleotide probe (SRB385) and utilized to analyze SRB quantity in the sediments. The results showed that in the sediments of Lake Erhai four SRB groups were detected except Desulfobacterium and Desulfobacter, meanwhile Desulfovibrio-Desulfomicrobium were detected only in autumn; different SRB groups had different temporal and dimensional distribution, and each group in autumn is distributed more widely than in spring; FISH used to count SRB in the sediments of fresh lake was set up successfully; the analysis of correlation between the sediment's depth and SRB quantity had statistical meaning (P〈0.05) . The result showed that SRB quantity showed a decreasing trend with increasing depth. Through the analysis of randomized block designed analysis of variance, the difference in SRB quantity between spring and autumn also had statistical meaning (P〈0.001), which revealed SRB quantity in autumn was larger than in spring; the result of FISH showed that there were some SRB in the deeper sediments in which no above-mentioned six SRB groups were detected by PCR. SRB groups in the sediments of Lake Erhai were rich, and the quantities of SRB groups in autumn were larger than in spring; possibly there were uncultivable SRB groups in the sediments of Lake Erhai.  相似文献   

13.
《地学前缘(英文版)》2018,9(6):1639-1648
Cohesion(c) and friction angle(φ) of rock are important parameters required for reliability analysis of rock slope stability. There is correlation between c and φ which affects results of reliability analysis of rock slope stability. However, the characterization of joint probability distribution of c and φ through which their correlation can be estimated requires a large amount of rock property data, which are often not available for most rock engineering projects. As a result, the correlation between c and φ is often ignored or simply assumed during reliability studies, which may lead to bias estimation of failure probability. In probabilistic rock slope stability analysis, the influence of ignoring or simply assuming the correlation of the rock strength parameters(i.e., c and φ) on the reliability of rock slopes has not been fully investigated. In this study, a Bayesian approach is developed to characterize the correlation between c and φ, and an expanded reliability-based design(RBD) approach is developed to assess the influence of correlation between c and φ on reliability of a rock slope. The Bayesian approach characterizes the sitespecific joint probability distribution of c and φ, and quantifies the correlation between c and φ using available limited data pairs of c and φ from a rock project. The expanded RBD approach uses the joint probability distribution of c and φ obtained through the Bayesian approach as inputs, to determine the reliability of a rock slope. The approach gives insight into the propagation of the correlation between c and φ through their joint probability into the reliability analysis, and their influence on the calculated reliability of the rock slope. The approaches may be applied in practice with little additional effort from a conventional analysis. The proposed approaches are illustrated using real c and φ data pairs obtained from laboratory tests of fractured rock at Forsmark, Sweden.  相似文献   

14.
Changes in the climatic system introduce uncertainties in the supply and management of water resources. The Intergovernmental Panel on Climate Change(IPCC) predicts an increase of 2 to 4 °C over the next 100 years. Temperature increases will impact the hydrologic cycle by directly increasing the evaporation of surface water sources. Consequently, changes in precipitation will indirectly impact the flux and storage of water in surface and subsurface reservoirs(i.e., lakes, soil moisture, groundwater, etc.). In addition, increases in temperature contribute to increases in the sea level, which may lead to sea water intrusions, water quality deterioration, potable water shortages, etc. Climate change has direct impacts on the surface water and the control of storage in rivers, lakes and reservoirs, which indirectly controls the groundwater recharge process. The main and direct impact of climate change on groundwater is changes in the volume and distribution of groundwater recharge. The impact of climate change on groundwater resources requires reliable forecasting of changes in the major climatic variables and accurate estimations of groundwater recharge. A number of Global Climate Models(GCMs) are available for understanding climate and projecting climate change.These GCMs can be downscaled to a basin scale, and when they are coupled with relevant hydrological models, the output of these coupled models can be used to quantify the groundwater recharge, which will facilitate the adoption of appropriate adaptation strategies under the impact of climate change.  相似文献   

15.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

16.
Lakes along the middle and lower reaches of the Yangtze River are unique shallow lake group faced with serious problems of eutrophication. In shallow lakes, there are strong interactions between surface sediment and overlying water, and the chemical, biological processes are complicated in the system. The mechanism of shallow lake eutrophication is still insufficient to instruct the harness practice. Water samples were collected quarterly in each lake center from 2000 to 2003. Chemical variables and ionic concentrations were measured in laboratory. This paper focused on the seasonal variations of NO2-N, NO3-N, NH4-N, DIP, chlorophyll a and TN : TP ratios in 49 lakes along the middle and lower reaches of the Yangtze River. The cooperating mechanisms between N and P were investigated through the analysis of their relationships at different nutrient levels.  相似文献   

17.
The Hohxil region in the northern Qinghai-Tibet Plateau is occupied by numerous plateau lakes, which have long been inferred as being tectonic products. However, so far little evidence has been found to support this tentative inference. Field survey and morphotectonic analysis of TM satellite images in the eastern segment of the Hohxil region revealed that Kusai Lake and Yelusu Lake are S-shaped pull-apart basins, which were dominated by left strike-slip master faults trending WNW–ESE. The pull-apart distances of the two lakes are analyzed to be <15-20 km and 15 km respectively. Based on studies of the faulting rate, the initiation ages of the pull-apart basins are suggested to be approximately in the Early Pleistocene. The pull-apart basin tectonics is further regarded as a common mechanism for the widely distributed large lake basins in the northern Qinghai-Tibet Plateau. Regional distribution of these pull-apart basins and their substantial intra-block slip suggest that a sinistral shear stress, which is independent of the distinguished strike-slip faults, has been imposed on across the northern Qinghai-Tibet Plateau. Thus, the intra-block slip may be an important expression of the eastward extrusion of the Plateau crustal material in accommodating the ongoing continent–continent convergence between India and Eurasia. The revelation of pull-apart tectonics within the Plateau hinterland provides field evidence and a possible style of deformation for the newly proposed continuous deformation by the global positioning system (GPS) measurement across the northern Qinghai-Tibet Plateau. A model, with respect to systematic tectonic landform development, for pull-apart basins is finally proposed.  相似文献   

18.
Little work has been done on the influence of seiments on the basic chemical composition of overlying water mass.This paper deals with the vertical profile of the basic constituents such as Ca^ ,K^ ,Na^ ,and HCO3^-,as well as of pH in the overlying water mass and sediment porewater of Lake Lugu-a semi-closed,deep lake in Yunnan Province.The reand sediment porewater of Lake Lugu- a semi-closed,deep lake in Yunnan Province.The results revealed that those basic constituents may diffuse and transport from bottom sediments to overlying water mass through porewater.In the paper are also quantitatively evaluated the diffusive fluxes and the extent of their influence on overlying water mass,indicating that the lake sediment-water interface diffusion plays an important role in controlling the basic chemical composition of water in the whole lake.  相似文献   

19.
The relationship between δ18O in precipitation and climatic factors is analyzed based on the observation of δ18O in precipitation and meteorological data in the four years from 1992 to 1995 at Tuotuohe Meteorological Station, Tibetan Plateau. Almost all the precipitation on the Tibetan Plateau is concentrated on the warm period of the year, while in the dry cold period, there is only a few precipitation events. Because the factors affecting δ18O in precipitation is rather complicated and the air temperature does not change too much in the precipitation season, the distribution of δ18O in precipitation with air temperature is therefore scattered. In this paper, the relationship between the averages of each meteorological factor and the corresponding δ18O in precipitation is analyzed. The analysis results indicate that there is an obvious positive correlation between the monthly δ18O and temperature in the 4 years: whenever the air temperature increases 1℃, δ18O in precipitation will increase 0. 5‰. No correlation can be observed between relative humidity and B18O in precipitation. There still can not find any correlation between the annual air temperature and annual δ18O in precipitation in the 4 years probably due to the very short time series of the observation and the little annual air temperature variations.  相似文献   

20.
Lacustrine sediments can provide potential information about environmental changes in the past. On the basis of high-resolution multi-proxy analysis including carbon and nitrogen contents of organic matter, C/N ratios, inorganic carbon contents, and carbon and oxygen isotopic composition of carbonate, together with precise 137Cs dating, the environmental evolution of Lake Chenghai, Yunnan Province, during the past 100 years has been investigated. It is shown that the carbonate in Lake Chenghai is authigenic, and the organic matter is mainly derived from aquatic plants and algae, instead of terrestrial-source materials. The environmental evolution of Lake Chenghai can be diverged into three periods with the contrasting characteristics during the past 100 years. Before 1940, the stable carbon and oxygen isotope values, the poor correlation between them and the lower carbon and nitrogen contents of organic matter suggested that Lake Chenghai was open, and the lake water was oligotrophic during that period. During 1940-1993, the negative δ13C values and the gradual increase of carbon and nitrogen contents of organic matter and C/N ratios indicated that the eutrophication was aggravated. The closeness of Lake Chenghai and human activities may be responsible for this eutrophication. After 1993, notable increases in carbon and oxygen isotopic values of carbonate, carbon and nitrogen contents of organic matter, C/N ratios and inorganic carbon contents demonstrated that the increase of lacustrine productivity and the serious eutrophication were resulted from strong human activities. Therefore, the multi-proxy in Lake Chenghai sediments has reliably recorded the natural environmental evolution and the impacts from human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号