首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barnes  I.  Bastian  V.  Becker  K. H.  Fink  E. H.  Nelsen  W. 《Journal of Atmospheric Chemistry》1986,4(4):445-466
The reactions of OH radicals with SO2, H2S, thiophenol, and a series of aliphatic thiols (1–5 C-atoms) have been investigated in 201 and 381 reaction chambers at 1 atm total pressure and 300 K using a competitive kinetic technique. Initially, OH radicals were produced by photolysis of CH3ONO/NO mixtures in air. Applying this OH source rate constants for OH with SO2, H2S, and thiophenol in synthetic air were determined to be (1.1±0.2)×10-12, (5.5±0.8)×10-12 and (1.1±0.2)×10-11 cm3 s-1, respectively. However, when this method was applied to the aliphatic thiols the rate constants obtained were found to be dependent on the partial pressures of O2 and NO. These effects have been attributed to the built-up of a radical species, not yet identified, which leads to uncontrolled chain reactions in the system. Using the photolysis of H2O2 at wavelengths greater than 260 nm as the OH source in 1 atm N2, rate constants for the 1–5 aliphatic thiols in the range 2.9 to 5.6×10-11 cm3 s-1 were obtained. The rate constants obtained in the present study are compared with recent literature values.  相似文献   

2.
Rate coefficients for the reactions of difunctional nitrates with atmospherically important OH radicals are not currently available in the literature. This study represents the first determination of rate coefficients for a number of C(3) and C(4) carbonyl nitrates and dinitrates with OH radicals in a 38 l glass reaction chamber at 1000 mbar total pressure of synthetic air by 298±2 K using a relative kinetic technique.The following rate coefficients (in units of 10-12 cm3 molecule-1 s-1) were obtained: 1,2-propandiol dinitrate, <0.31; 1,2-butandiol dinitrate, 1.70±0.32; 2,3-butandiol dinitrate, 1.07±0.26; -nitrooxyacetone, <0.43; 1-nitrooxy-2-butanone, 0.91±0.16; 3-nitrooxy-2-butanone, 1.27±0.14; 1,4-dinitrooxy-2-butene, 15.10±1.45; 3,4-dinitrooxy-1-butene, 10.10±0.50.The possible importance of reaction of OH as an atmospheric sink for the compounds compared to other loss processes is considered.  相似文献   

3.
The gas phase reactions of peroxyacetyl nitrate (PAN) with OH and Cl have been studied using the discharge-flow EPR method. The rate constants are found to be k 3=(7.5±1.4)×10-14 and k 4=(3.7±1.7)×10-13 cm3 molecule-1 s-1 at 298 K, respectively. These results confirm that the OH+PAN reaction will be the dominant sink of PAN in the middle and upper troposphere, whereas the reaction Cl+PAN will be negligible in contrast with previous estimations.  相似文献   

4.
Rate coefficients have been measured for the reactions of hydroxyl radicals with five aliphatic ethers over the temperature range 242–328 K. Competitive studies were carried out in an atmospheric flow reactor in which the hydroxyl radicals were generated by the photolysis of methyl nitrite in the presence of air containing nitric oxide. The reaction of OH with 2,3-dimethyl-butane was used as the reference reaction and the following Arrhenius parameters have been obtained for the reactions: OH+RORproducts:
RORE/kJ mol–1 1012 A/cm3 molecule–1 s–1
dethyl ether–2.8±0.43.5±0.6
di-n-propyl ether–1.2±0.611.5±2.7
methylt-butyl ether0.85±0.594.0±1.3
ethyln-butyl ether–1.3±0.58.7±1.7
ethylt-butyl ether–1.2±0.63.0±0.8
  相似文献   

5.
Rate constants have been measured for the reactions of hydroxyl radicals with alkyl nitrates and with some oxygen-containing organic compounds by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, ethylene and the organic substrate were photolysed in a Teflon bag smog chamber. Based on the value k HO+C2H4}=8.1×10-12 cm3 molecule-1 s-1 the following rate constants were obtained for the hydroxyl radical reactions at 750 Torr and at 303 K in units of 10-12 cm3 molecule-1: CH3ONO2, 0.37±0.09; C2H5ONO2, 0.48±0.20; n-C3H7ONO2, 0.70±0.22; C2H5OH, 3.6±0.4; CH3COCH3, 0.26±0.08; CH3CO2 i-C3H7, 3.0±0.8; CH3CO2 n-C3H7, 2.4±0.2. The results are discussed in relation to the available literature data and the implications of the results are considered in terms of the smog reactivity of these molecules.  相似文献   

6.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O> -(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented.  相似文献   

7.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

8.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

9.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

10.
The design and performance of a smog chamber for the study of photochemical reactions under simulated environmental conditions is described. The chamber is thermostated for aerosol experiments, and it comprises a gas chromatographic sample enrichment system suitable for monitoring hydrocarbons at the ppbv level. By irradiating NO x /alkane-mixtures rate constants for the reaction of OH radicals with n-alkanes are determined from n-pentane to n-hexadecane to be (k±2)/10–12 cm3 s–1=4.29±0.16, 6.2±0.6, 7.52 (reference value), 8.8±0.3, 10.2±0.3, 11.7±0.4, 13.7±0.3, 15.1±0.5, 17.5±0.6, 19.3±0.7, 22.3±1.0, and 25.0±1.3, respectively at 312 K. Rate constants, (k±2)/10–17 cm3 s–1, for the reaction of ozone with trans-2-butene (21.2±1.0), cis-3-methylpentene-(2) (47.2±1.7), cyclopentene (62.4±3.5), cyclohexene (7.8±0.5), cycloheptene (28.3±1.5), -pinene (8.6±1.3), and -pinene (1.4±0.2) are determined in the dark at 297 K using cis-2-butene (13.0) as reference standard.  相似文献   

11.
Rate constants for the gas-phase reactions of OH radicals with nopinone (6,6-dimethylbicyclo[3.1.1]heptan-2-one) and camphenilone (3,3-dimethylbicyclo[2.2.1]heptan-2-one) and for the reactions of 4-acetyl-1-methylcyclohexene with OH and NO3 radicals and O3 have been measured at 296±2 K. The rate constants (cm3 molecule–1 s–1 units) obtained were, for reaction with the OH radical: nopinone, (1.43±0.37)×10–11; camphenilone, (5.15±1.44)×10–12; and 4-acetyl-1-methylcyclohexene, (1.29±0.33)×10–10; for reaction with the NO3 radical: 4-acetyl-1-methylcyclohexene, (1.05±0.38)×10–11; and for reaction with O3: 4-acetyl-1-methylcyclohexene, (1.50±0.53)×10–16. These data are used to calculate the tropospheric lifetimes of these monoterpene atmospheric reaction products.  相似文献   

12.
The chemistry of glycolaldehyde (hydroxyacetaldehyde) relevant to the troposphere has been investigated using UV absorption spectrometry and FTIR absorption spectrometry in an environmental chamber. Quantitative UV absorption spectra have been obtained for the first time. The UV spectrum peaks at 277 nm with a maximum cross section of (5.5± 0.7)×10–20 cm2 molecule–1. Studies of the ultraviolet photolysis of glycolaldehyde ( = 285 ± 25 nm) indicated that the overall quantum yield is > 0.5 in one bar of air, with the major products being CH2OH and HCO radicals. Rate coefficients for the reactions of Cl atoms and OH radicals with glycolaldehyde have been determined to be (7.6± 1.5)×10–11 and (1.1± 0.3)×10–11 cm3 molecule–1 s–1, respectively, in good agreement with the only previous study. The lifetime of glycolaldehyde in the atmosphere is about 1.0 day for reaction with OH, and > 2.5 days for photolysis, although both wet and dry deposition should also be considered in future modeling studies.  相似文献   

13.
The following temperature-dependent rate coefficients (k/cm3 molecule–1 s–1) of the reactions of hydroxyl radicals with aliphatic ethers have been determined over the temperature range 247–373 K by a competitive flow technique: diethyl ether,k OH=5.2×10–12 exp[(262±150)/T]; methyln-butyl ether,k OH=5.4×10–12 exp[(309±150)/T]; ethyln-butyl ether,k OH=7.3×10–12 exp[(335±150)/T]; di-n-butyl ether,k OH=5.5×10–12 exp[(502±150)/T] and di-n-pentyl ether,k OH=8.5×10–12 exp[(417±150)/T]. The data have been measured relative to the rate coefficientk(OH + 2,3-dimethylbutane)=6.2×10–12 cm3 molecule–1 s–1 independent of temperature.Previous discrepancies in the room-temperature rate coefficients for the OH reactions with ethyln-butyl ether and di-n-butyl ether, obtained in the flow and static experiments of Bennett and Kerr (J. Atmos. Chem. 8, 87–94, 1989;10, 29–38, 1990) compared with those of Wallingtonet al. (Int. J. Chem. Kinet. 20, 541–547, 1988;21, 993–1001, 1989) and of Nelsonet al. (Int. J. Chem. Kinet. 22, 1111–1126, 1990) have been resolved. The results are considered in relation to the available literature data and evaluated rate expressions are deduced where possible. The data are also discussed in terms of structure-activity relationships.  相似文献   

14.
The absolute rate constants for the gas-phasereactions of the NO3 radical with a series ofaldehydes such as acetaldehyde, propanal, butanal,pentanal, hexanal and, heptanal were measured overthe temperature range 298–433 K, using a dischargeflow system and monitoring the NO3 radical byLaser Induced Fluorescence (LIF).The measured rate constants at 298 K for thereaction of NO3, in units of 10–14 cm3molecule–1 s–1, were as follows:acetaldehyde 0.32 ± 0.04, propanal 0.60 ± 0.06, butanal 1.46± 0.16, pentanal 1.75 ±0.06, hexanal 1.83 ± 0.36, and heptanal 2.37 ±0.42. The proposed Arrhenius expressions arek1 = (6.2 ± 7.5) × 10–11 exp[–(2826 ± 866)/T] (cm3 molecule–1s–1),k2 = (1.7 ± 1.0) × 10–11 exp[–(2250 ± 192)/T] (cm3 molecule–1s1), k3 =(7.6 ± 9.8) × 1011 exp[–(2466 ± 505)/T] (cm3 molecule–1s–1),k4 = (2.8 ± 1.4) × 10–11 exp[–(2189 ± 156)/T] (cm3 molecule–1s–1), k5 = (7.0 ± 1.8) ×10–11 exp [–(2382 ± 998)/T](cm3 molecule–1 s–1), andk6 = (7.8 ± 1.0) × 10–11 exp[–(2406 ± 481)/T](cm3 molecule–1 s–1).Tropospheric lifetimes for these aldehydes werecalculated at night and during the day for typicalNO3 and OH average concentrations and showed thatboth radicals provide an effective tropospheric sinkfor these compounds and that the night-time reactionwith the NO3 radical can be an important, if notdominant, loss process for these emitted organics andfor NO3 radicals.  相似文献   

15.
Rate constants for the reaction of hydroxyl radicals with dibromomethanehave been measured by discharge flow-resonance fluorescence technique(DF-RF) over the temperature range 288–368 K. The derived Arrheniusequation is k1=(1.51 ± 0.37)× 10-12 exp(-(720 ±60)/T) cm3 molec.-1 s-1.The tropospheric lifetime of dibromomethane has been estimated to be 0.29years. An ozone depletion potential (ODP) value of 0.10 for dibromomethanehas been obtained.  相似文献   

16.
The solubilities and hydrolysis rates of PAN (peroxyacetyl nitrate) and its homologues PPN (peroxypropionyl nitrate), PnBN (peroxy-n-butyl nitrate), PiBN (peroxy-isobutyl nitrate) and MPAN (peroxymethacryloyl nitrate) in liquid water have been studied at 20 °C. Temperature dependencies were measured for PAN and PPN. The solubilities of peroxyacyl nitrates decrease smoothly with increasing carbon-chain length fromH (293 K)=4.1 M atm–1 (PAN) toH (293 K)=1.0 M atm–1 (PiBN). Hydrolysis-rate constants, which cover the range fromk h (293 K)=(2.4–7.4)×10–4 s–1, do not show a systematic chain-length dependency. Solubilities of PAN and PPN in solutions which mimic the composition and ionic strength of sea water are 15% and 20% lower than in pure water. The hydrolysis rate constants are not affected.  相似文献   

17.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

18.
Products and mechanisms for the gas-phase reactions of NO3 radicals with CH2=CHCl, CH2=CCl2, CHCl=CCl2,cis-CHCl=CHCl andtrans-CHCl=CHCl in air have been studied. The experiments were carried out at 295±2 K and 740±5 Torr in a 480-L Teflon-coated reaction chamber and at 295±2 K and 760±5 Torr in a 250-L stainless steel reactor. NO3 was generated by the thermal dissociation of N2O5. Experiments with15NO3 and CD2CDCl have also been performed. The initially formed nitrate peroxynitrates decay into carbonyl compounds, nitrates, HCl and ClNO2. In adidtion, there are indications of nitrooxy acid chlorides being produced. The reactions with CH2=CCl2 and CHCl=CCl2 are more complex due to release of chlorine atoms which eventually lead to formation of chloroacid chlorides.A general reaction mechanism is proposed and the observed concentration-time profiles of reactants and products are simulated for each compound. The rate constants for the initial step of NO3 addition to the chloroethenes are determined as: (2.6±0.5, 9.4±0.9, 2.0±0.4 and 1.4±0.4) × 10–16 cm3 molecule–1 s–1 for CH2=CHCl, CH2=CCl2, CHCl=CCl2 andcis-CHCl=CHCl, respectively.  相似文献   

19.
Absolute rate coefficient measurements have been carried out for the reactions of Cl atoms with propene and a series of 3-halopropenes, at room temperature (298 ± 2) K using a newly constructed laser photolysis-resonance fluorescence (PLP-RF) system. The rate coefficients obtained (in units of cm3 molecule–1 s–1) are: propene (1.40± 0.24) ×10–10, 3-fluoropropene (4.92 ± 0.42) ×10–11, 3-chloropropene (7.47 ± 1.50) × 10–11, 3-bromopropene (1.23± 0.14) ×10–10 and 3-iodopropene (1.29± 0.15) ×10–10. In order to test this new system, the reactions of Cl atoms with acetone and isoprene have also been studied and compared with data previously reported. The rate coefficients determined at room temperature for these last two reactions are (2.93 ± 0.20) ×10–12 cm3 molecule–1 s– 1 and (3.64± 0.20)×10–10 cm3 molecule–1 s–1, respectively. The measured values were independent of pressure over the range 20–200 Torr. The influence of the different halogen atoms substituents on the reactivity of these alkenes with Cl atoms as well as the atmospheric implications of these measurements are studied and discussed for the first time in this work and compared with the reactivity with NO3 and OH radicals.  相似文献   

20.
The reaction of Cl with cyclohexanone (1) was investigated, for the first time, as a function of temperature (273–333 K) and at a low total pressure (1 Torr) with helium as a carrier gas using a discharge flow-mass spectrometry technique (DF-MS). The resulting Arrhenius expression is proposed, k 1= (7.7 ± 4.1) × 10–10 exp[–(540 ± 169)/T]. We also report a mechanistic study with the quantitative determination of the products of the reaction of Cl with cyclohexanone. The absolute rate constant derived from this study at 1 Torr of total pressure and room temperature is (1.3 ± 0.2) × 10–10 cm3 molecule–1 s–1. A yield of 0.94 ± 0.10 was found for the H-abstraction channel giving HCl. In relative studies, using a newly constructed relative rate system, the decay of cyclohexanone was followed by gas chromatography coupled with flame-ionisation detection. These relative measurements were performed at atmospheric pressure with synthetic air and room temperature. Rate constant measured using the relative method for reaction (1) is: (1.7 ± 0.3) × 10–10 cm3 molecule–1 s–1. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号