首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent decadal salinity changes in the Greenland-Scotland overflow-derived deep waters are quantified using CTD data from repeated hydrographic sections in the Irminger Sea. The Denmark Strait Overflow Water salinity record shows the absence of any net change over the 1980s–2000s; changes in the Iceland–Scotland Overflow Water (ISOW) and in the deep water column (σ0 > 27.82), enclosing both overflows, show a distinct freshening reversal in the early 2000s. The observed freshening reversal is a lagged consequence of the persistent ISOW salinification that occurred upstream, in the Iceland Basin, after 1996 in response to salinification of the northeast Atlantic waters entrained into the overflow. The entrainment salinity increase is explained by the earlier documented North Atlantic Oscillation (NAO)-induced contraction of the subpolar gyre and corresponding northwestward advance of subtropical waters that followed the NAO decline in the mid-1990s and continued through the mid-2000s. Remarkably, the ISOW freshening reversal is not associated with changes in the overflow water salinity. This suggests that changes in the NAO-dependent relative contributions of subpolar and subtropical waters to the entrainment south of the Iceland–Scotland Ridge may dominate over changes in the Nordic Seas freshwater balance with respect to their effect on the ISOW salinity.  相似文献   

2.
In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996-2002 period documented by ∼10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002.For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at ∼10 and ∼300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea.By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.  相似文献   

3.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨。为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析。分析结果表明副极地海区表层密度变化领先大西洋径向翻转环流(MOC)变化7 a,北大西洋暖流的变化领先 MOC变化4 a,格陵兰-苏格兰海脊溢流水强度(包括丹麦海峡溢流水和法鲁海峡溢流水,是北大西洋深层水的重要来源)的变化领先 MOC的变化3 a;北大西洋大气要素变化对北大西洋热盐环流年代际振荡有非常重要的调制作用,当副极地流环和北大西洋暖流(NAC)达到最强的2 a之前,高纬度地区大气为气旋式环流异常,中纬度地区大气为反气旋式环流异常,海表热通量在大西洋副极地海区是负异常,这都有利于副极地流环和NAC的加强,更多高盐度的北大西洋水进入格陵兰-冰岛-挪威海(GIN)海域,由此可以导致GIN海域表层密度上升,使水体的层结稳定性减弱,有利于深层对流的发生,同时大气变化通过风应力旋度和海表热通量也直接影响GIN海域深层水的生成,进而导致格陵兰-苏格兰海脊溢流水的强度增加。  相似文献   

4.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨.为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析.分析结果表明副极地海区表...  相似文献   

5.
The Hadley Centre climate model HadCM3 simulates a stable thermohaline circulation driven by deep water formation in the Norwegian and Labrador Seas without the need for flux adjustments. It has however been suggested that this result is the fortuitous consequence of the local use of the Roussenov convection scheme in this region, and that the model simulation may depend sensitively on this parameterisation. Here we investigate the sensitivity of the thermohaline circulation (THC) to the model’s treatment of the overflows from the Nordic Seas for both pre-industrial and increasing greenhouse gas forcings. We find that although the density structure in the Labrador Sea does depend upon the specifics of how the overflows are modelled, the global thermohaline circulation and climate responses are not sensitive to these details. This result gives credibility to previously published modelling studies on the response of the thermohaline circulation to anthropogenic greenhouse gas forcing, and implies that research may profitably be focussed on the large scale transports, where models are known to disagree.  相似文献   

6.
One of the major pathways in the northern part of the Meridional Overturning Circulation (MOC) is that of the deep water in the Nordic Seas that runs through the Faroe-Shetland Channel (FSC) and Faroe Bank Channel (FBC), as well as crossing the Wyville Thomson Ridge (WTR), on its way into the Atlantic Ocean. The WTR overflow cascades down the southern side of the ridge via the narrow Ellett Gully to the Cirolana Deep (CD) which, at 1700 m, is the deepest hole in the extreme north of the Rockall Trough. The overflow accounts for nearly 1/10th of the total Faroe-Shetland Channel Bottom Water (FSCBW) discharged through the Faroese channels and is an important intermediate water mass in the Rockall Trough. Over a period of only seven days in April 2003 bottom water temperatures cooled dramatically, from 4.46 to 3.03 °C in the CD and from 3.93 to 2.54 °C in the Ymir Trough (YT). A numerical general circulation model (MITgcm) has been applied in order to reproduce the details of this dense water overflow event. Model results were consistent with the observed cooling and total water transport. It was found that the descending gravity current forms a pair of mesoscale eddies with cyclonic and anticyclonic vorticity at the exit to the CD. Analysis of mixing processes were obtained when a passive tracer was included in the model. It was found that downstream flow is characterized by an explosive detrainment regime in the CD. The model sensitivity runs revealed that the final depth to which the overflow descends depends on the initial upstream velocity of the overflow, as well as the buoyancy difference. It is argued that models of overflows need to have realistic representations of the density structure of the overflow, and sufficiently fine vertical resolution, for the subsequent fate of the overflow to be accurately represented.  相似文献   

7.
The main water transformations in the Arctic Mediterranean take place in the boundary current of Atlantic Water, which crosses the Greenland–Scotland ridge from the North Atlantic into the eastern Norwegian Sea. It enters and flows around the Arctic Ocean before it exits the Arctic Mediterranean as the East Greenland Current, primarily through Denmark Strait. On route, it experiences numerous branchings and mergings. By examining how the properties of this “circumpolar” boundary current evolve, it is possible to identify and describe the processes causing the water mass transformations in the Arctic Mediterranean. It is also possible to follow the Arctic Ocean deep waters as they spread into the Nordic Seas and eventually provide 40% of the overflow water supplying the North Atlantic Deep Water.  相似文献   

8.
The principal meeting point of the subtropical and subpolar gyres of the North Atlantic is at the Tail of the Grand Banks where the two western boundary currents, the Gulf Stream and Labrador Current, join forces as the North Atlantic Current, which flows northeast almost 10° in latitude before turning east as the Subpolar Front, ultimately feeding the Labrador and Nordic Seas and the thermohaline overturning. After the Gulf Stream turns into the North Atlantic Current at the Grand Banks, its role shifts from a wind-driven current to a link in the large-scale thermohaline circulation. The processes governing this transition, in particular the continued transport north of mass and heat, are questions of considerable climatic importance. The North Atlantic Current is a very unusual western boundary current in that its mass transport decreases in the downstream direction.The mean path and annual shifting of the eastward flowing Gulf Stream is conjectured to result from a time-varying shelf-Slope Water overflow of waters from the Labrador shelf. As the volume transport increases in fall and deepens the Slope Water pycnocline, it forces the Gulf Stream south and deepens the Sargasso Sea thermocline as well. The timing of these steps governs the June maximum in baroclinic transport. There is some evidence that this ‘back-door’ gyre interaction may operate on interannual time scales as well. The question then arises whether the shelf-to-Slope Water Sea transport also plays a role in governing the separation of the Gulf Stream.The widely observed robustness of the width of the Gulf Stream appears to result from a tight balance between the release of available potential energy and the kinetic energy of the current. A broader current would release more energy than can be ‘disposed of’, while a narrower current requires more kinetic energy than is available to sustain it. It is shown that for plausible dissipation rates in the recirculation gyres, the amount of energy that needs to be expelled from the Gulf Stream is such a small fraction of that advected through as to be vitually undetectable, hence the stiffness of the current.  相似文献   

9.
The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position.  相似文献   

10.
The variability of the ice and freshwater transports through the main openings of the Nordic Seas is studied based on a 200-year simulation with a sea ice–ocean model forced by stochastic surface wind stress anomalies representative of Northern annular mode (NAM). The spectrum of the ice export through Fram Strait (FS), which constitutes the main contribution to the total freshwater export anomaly from the Arctic, shows no significant peak though half of the variance is concentrated at periods longer than a year. The standard deviation of the freshwater export to the subpolar gyre through Denmark Strait only amounts to 40% of the standard deviation of the total (ice+liquid) freshwater export through FS, with a comparatively larger variance in the low-frequency range, suggesting that the Greenland Sea could act as a low-pass filter. In the upper layer of the Iceland–Scotland Passage, positive phases of the NAM lead to a fast increase of the northward volume and salt transports. Within 2 years, the salt transport anomaly, however, changes sign due to advection of negative salinity anomalies which originate in the subpolar gyre and can be traced up to the Barents Sea.  相似文献   

11.
《Ocean Modelling》2008,20(3-4):138-160
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

12.
Current estimates of freshwater flux through Arctic and subarctic seas   总被引:2,自引:0,他引:2  
As the world warms, the expectation is that the freshwater outflows from the Arctic Ocean to the North Atlantic will strengthen and may act to suppress the rate of the climatically-important Atlantic meridional overturning circulation. Hitherto, however, we have lacked the system of measurements required to estimate the totality of the freshwater flux through subarctic seas. Though observations remain patchy and rudimentary in places, we piece-together the results from recent large-scale observational programmes together with associated modelling, to establish preliminary maps of the rates and pathways of freshwater flux through subarctic seas. These fluxes are calculated according to two reference salinities, S = 34.8 to conform with the majority of estimates reported in the literature, and S = 35.2, the salinity of the inflowing Atlantic water, to calculate the freshwater balance of the ‘Arctic Mediterranean’. We find that 148 mSv of freshwater enters the Nordic Seas across its northern boundary. There it is supplemented by around 54 mSv of freshwater from Baltic runoff, Norwegian runoff, P − E and Greenland ice melt, so that the total freshwater contribution to the Nordic Seas from all sources is 202 mSv. Of this, around 51 mSv of freshwater is estimated to pass south to the deep Atlantic in the dense water overflows leaving an assumed balance of 151 mSv to leave the Nordic Seas in the upper water export through Denmark Strait. The corresponding estimate for the freshwater outflow west of Greenland is 103 mSv relative to 35.2 so that the total freshwater flux reaching the North Atlantic through subarctic seas is around 300 mSv.  相似文献   

13.
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

14.
A time series of a standard hydrographic section in the northern Rockall Trough spanning 23 yr is examined for changes in water mass properties and transport levels. The Rockall Trough is situated west of the British Isles and separated from the Iceland Basin by the Hatton and Rockall Banks and from the Nordic Seas by the shallow (500 m) Wyville–Thompson ridge. It is one pathway by which warm North Atlantic upper water reaches the Norwegian Sea and is converted into cold dense overflow water as part of the thermohaline overturning in the northern North Atlantic and Nordic Seas. The upper water column is characterised by poleward moving Eastern North Atlantic Water (ENAW), which is warmer and saltier than the subpolar mode waters of the Iceland Basin, which also contribute to the Nordic Sea inflow. Below 1200 m the deep Labrador Sea Water (LSW) is trapped by the shallowing topography to the north, which prevents through flow but allows recirculation within the basin. The Rockall Trough experiences a strong seasonal signal in temperature and salinity with deep convective winter mixing to typically 600 m or more and the formation of a warm fresh summer surface layer. The time series reveals interannual changes in salinity of ±0.05 in the ENAW and ±0.04 in the LSW. The deep water freshening events are of a magnitude greater than that expected from changes in source characteristics of the LSW, and are shown to represent periodic pulses of newer LSW into a recirculating reservior. The mean poleward transport of ENAW is 3.7 Sv above 1200 dbar (of which 3.0 Sv is carried by the shelf edge current) but shows a high-level interannual variability, ranging from 0 to 8 Sv over the 23 yr period. The shelf edge current is shown to have a changing thermohaline structure and a baroclinic transport that varies from 0 to 8 Sv. The interannual signal in the total transport dominates the observations, and no evidence is found of a seasonal signal.  相似文献   

15.
北欧海作为连接北冰洋和北大西洋的重要海域,其由热效应产生的辐合场值得关注。本文利用NECP/NCAR的速度势函数(Velocity Potential,VP)数据表征北欧海辐合辐散场,发现在秋冬季北欧海上空大气低层存在一个独立的辐合区域。经验正交函数分解结果表明,北欧海上空的VP显示出除了表征北极涛动的全区一致型模态外,还表现出一个东西向辐合辐散反位相的东西振荡型模态。该模态与一支连接北大西洋涛动(NAO)和欧亚遥相关(EU)的复合型大气遥相关波列有关,北欧海表层潜热和感热异常加热通过影响低空大气的异常辐合辐散,与北大西洋偶极子型海温异常加热共同作用,加强了NAO异常环流;同时高空急流波导作用加强了从北欧海到东亚的EU波列,使得位于NAO和EU之间的北欧海成为连接NAO和EU大气遥相关波列的“中继站”,进而通过这种复合型大气遥相关波列将北大西洋与东亚大气环流联系起来,形成对东亚地区天气气候的远程影响。  相似文献   

16.
The flow of Atlantic water between Iceland and the Faroe Islands is one of three current branches flowing from the Atlantic Ocean into the Nordic Seas across the Greenland–Scotland Ridge. By the heat that it carries along, it keeps the subarctic regions abnormally warm and by its import of salt, it helps maintain a high salinity and hence density in the surface waters as a precondition for thermohaline ventilation. From 1997 to 2001, a number of ADCPs have been moored on a section going north from the Faroes, crossing the inflow. Combining these measurements with decade-long CTD observations from research vessel cruises along this section, we compute the fluxes of water (volume), heat, and salt. For the period June 1997–June 2001, we found the average volume flux of Atlantic water to be 3.5±0.5 Sv (1 Sv=106 m3·s−1). When compared to recent estimates of the other branches, this implies that the Iceland–Faroe inflow is the strongest branch in terms of volume flux, transporting 47% of the total Atlantic inflow to the Arctic Mediterranean (Nordic Seas and Arctic Ocean with shelf areas). If all of the Atlantic inflow were assumed to be cooled to 0 °C, before returning to the Atlantic, the Iceland–Faroe inflow carries a heat flux of 124±15 TW (1 TW=1012 W), which is about the same as the heat carried by the inflow through the Faroe–Shetland Channel. The Iceland–Faroe Atlantic water volume flux was found to have a negligible seasonal variation and to be remarkably stable with no reversals, even on daily time scales. Out of a total of 1348 daily flux estimates, not one was directed westwards towards the Atlantic.  相似文献   

17.
The role of Mediterranean Overflow Water (MOW) in creating subsurface salinity anomalies within the Rockall Trough, a gateway to high latitude areas of deep convection, has been examined closely in recent years. Eulerian investigations of high latitude property fields have suggested that these subsurface anomalies are likely the result of variability in the zonal extent of the eastern limb of the subpolar gyre: when expanded into the eastern North Atlantic, the gyre is presumed to limit the extent to which MOW is able to penetrate northward to subpolar latitudes. However, though the depth of the subsurface salinity anomalies in the Rockall Trough supports the hypothesis that the intermittent presence of MOW is involved in creating the anomalies, MOW pathways to the Rockall Trough have not yet been established. Here, Lagrangian trajectories from floats released in the eastern North Atlantic between 1996 and 1997 and synthetic trajectories launched within an eddy-resolving ocean general circulation model are used to demonstrate that two main density neutral transport pathways lead to the Rockall Trough. One pathway involves the transport of relatively fresh waters as part of the North Atlantic Current and the other involves the transport of relatively salty waters from the eastern reaches of the subtropical North Atlantic. The results from this study indicate that changes in these pathways over time can explain the subsurface salinity variability in the Rockall Trough.  相似文献   

18.
The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.  相似文献   

19.
Sedimentological and faunal records from the transitional period marking the onset of widespread northern hemisphere glaciation have been investigated at Ocean Drilling Program Site 984. The late Pliocene interglacial sediments of the northeast Atlantic are carbonate rich and show evidence of vigorous bottom water circulation at intermediate water depths. Contrasting this, the late Pliocene glacial sediments are characterised by carbonate dissolution and slower bottom current velocities. Weak or “leaky” Norwegian Sea overflows, undersaturated with respect to carbonate, influenced this region during the late Pliocene glacials. The early Pleistocene pattern of intermediate water circulation appears to have changed radically in the northeast Atlantic. At this time, interglacial carbonate values and inferred bottom current velocities are low. This suggests slow-flowing, undersaturated Norwegian Sea water bathing the site. The overflow increased during the early Pleistocene interglacials as the exchange between the Atlantic and Norwegian-Greenland Seas improved. The most significant feature of the early Pleistocene glacials is the increase in inferred bottom current velocity. These changes reflect a switch in deep North Atlantic convection to shallower depths during glacial periods, possibly in a manner similar to the increasing contribution of glacial intermediate water to the North Atlantic during the late Pleistocene glacials. Our results suggest that the late Pleistocene climate variability of the North Atlantic is a pervasive feature of the late Pliocene–early Pleistocene record.  相似文献   

20.
Two standard sections across the deep water channel separating the Faroese Plateau from the Scottish continental shelf have been surveyed regularly since the start of the 20th century. There have been significant changes in the characteristics of surface, intermediate and deep water masses during this period. At intermediate depths, the presence of Norwegian Sea Arctic Intermediate Water (NSAIW) was evident as a salinity minimum during the first decade of the century. During the decades 1960–1980 this salinity minimum disappeared, and only four water types were identified in the Channel. Since 1980 the salinity of the intermediate water has again decreased, due to changes in the atmospheric forcing over the Nordic Seas, and it is again evident on a θS curve as a distinct minimum. The salinity of the bottom water in the Channel has also decreased (0.01/decade) linearly since the mid-1970s, although at a slower rate than the intermediate water (0.02/decade). The decline in salinity of the bottom water cannot be accounted for by changes in the salinity of upper Norwegian Sea Deep Water (NSDW), which Faroe Shetland Channel Bottom Water (FSCBW) has traditionally been assumed to be composed of. There is evidence that the upper level of NSDW has become deeper outside the Channel owing to a reduced supply from the Greenland Sea. This has resulted in a change in the composition of FSCBW, from being approximately 60% NSDW during the period 1970–1985 to 40% NSDW since 1990. Thus, the thermohaline circulation of the Nordic Seas has lost its deep water connection. The associated freshening of FSCBW has propagated out through the Channel into the North Atlantic and has resulted in a reduction of the salinity (0.02/decade) and transport (1–7%/decade) of Iceland Scotland Overflow Water (ISOW) into the North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号