首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 137 毫秒
1.
黄河三门峡至扣马段的阶地序列及成因   总被引:3,自引:0,他引:3  
通过对黄河三门峡至扣马段的野外地貌调查, 结合黄土地层学、年代学分析, 发现黄 河在位于豫西断隆的三门峡至孟津段发育至少4 级阶地, 其形成时代由老到新分别为: 0.86 Ma BP、0.62 Ma BP、0.13 Ma BP 和0.05 Ma BP; 在位于华北断坳的孟津至扣马段仅发育 3 级阶地, 形成时代分别为: 1.24 Ma BP、0.25 Ma BP 和0.05 Ma BP。黄河各级阶地的河流 相沉积物顶部都有一层古土壤发育表明, 黄河下切形成阶地的过程发生在古土壤发育的间冰 期, 气候变化对阶地的形成有一定影响, 但是, 黄河流经豫西断隆和华北断坳两个抬升状况 差异较大的构造单元所表现出来的阶地序列和年代的迥然差异则证明了地面抬升也是控制黄 河阶地发育的重要因素。  相似文献   

2.
陇西六盘山黄土及最近1.8 Ma B.P.以来的构造运动气候变化   总被引:1,自引:3,他引:1  
对陇西盆地六盘山西侧山麓剥蚀面上断岘剖面的古地磁、磁化率和粒度分析表明,该剖面具有1.8 Ma B.P.以来完整的黄土-古土壤沉积序列.断岘剖面以下7级黄河阶地的发育形成以及在1.1和0.8 Ma B.P.前后所指示的腾格里沙漠扩张变化,反映了第四纪早更新世以来青藏高原阶段性隆升对黄土高原西部环境变化影响,以及在青藏高原隆升过程中构造与气候的变化与耦合响应.  相似文献   

3.
刘锋  潘保田  苏怀 《中国沙漠》2008,28(5):821-826
兰州黄河阶地最新研究结果表明,在兰州地区已经总共发现九级黄河阶地。其中第五级小沙沟阶地(T5)是在原来发现的黄河五一山阶地和黄河墩洼山阶地之间新发现的一级阶地,但是第五级小沙沟阶地的形成时代是根据上覆黄土的古土壤序列和阶地关系推断得来的,一直没有进行绝对年代测定。通过对阶地河漫滩及其之上覆盖的风成黄土的磁性地层研究,结合黄土古土壤序列轨道调谐年龄,确定兰州地区黄河第五级(T5)阶地的形成时代为0.96 Ma。T5阶地年龄的确定使兰州地区获得了一个有完整年代的黄河阶地序列,是对兰州黄河阶地发育模式证据的补充。  相似文献   

4.
胡春生  周迎秋 《地理科学》2014,34(5):614-620
以兰州盆地0.8 Ma B.P.阶地为例证,运用古地磁测年方法,通过收集相关文献,分析讨论了0.8 Ma B.P.阶地与0.8 Ma B.P.环境突变事件的联系。结果表明:① 0.8 Ma B.P.环境突变事件主要表现在气候转型、构造运动等方面,具有群发性和全球性特点;② 兰州盆地以及其他区域0.8 Ma B.P.阶地存在的证据,表明河流在0.8 Ma B.P. 前后普遍发生过一次下切事件;③ 0.8 Ma B.P.阶地是河流对0.8 Ma B.P.环境突变事件的地貌响应,构造运动为提供了下切驱动力,而气候变化则控制了下切时间。  相似文献   

5.
山西保德黄河最高阶地形成的时代   总被引:1,自引:0,他引:1  
野外调查发现山西保德地区存在六级阶地序列,其中第四级阶地在保德保存最为完好,而最老的第六级阶地为晚第三纪阶地。保德地区各级阶地上砾石的岩性都以灰岩为主,砂岩次之,表明晚第三纪阶地与黄河低阶地物源相同,应该是黄河阶地。在磨扇沟T6阶地上覆厚度超过51 m的红粘土层,磁性地层的研究表明,该红粘土的底部年代在6.5 Ma左右,这与保德冀家沟的研究结果吻合,说明保德地区黄河最高阶地形成的时代约在6.5 Ma左右。而黄河则可能是伴随着8.0 Ma左右青藏高原东北缘的强烈隆升而形成。  相似文献   

6.
武江在坪石段共保留下6级基座阶地.坪石的多级基座阶地是在与粤北金鸡岭夷平面同期发育的准平原基础上,由河流的阶段性下切所形成.本区由于受以掀斜运动为特征的新构造运动的影响,阶地所在的西南岸台地区抬升速率约为0.073 m/ka,大于金鸡岭夷平面0.066 m/ka的抬升速率,致使武江在坪石段不断向东北方向摆动,沿途形成了多级基座阶地.在湿热气候条件下,尤其是在基座上覆富含有机质的河漫滩相沉积物的"储酸池"效应作用下,阶地基座发生了强烈的化学风化.该风化基座具有双层夷平结构,与我国南方覆盖型岩溶的双层夷平结构在成因上具有一致性.  相似文献   

7.
川西高原杂谷脑河阶地的形成   总被引:8,自引:0,他引:8  
根据野外实地地貌调查,确定了川西高原杂谷脑河理县段发育了8级阶地,并对阶地沉积物进行了ESR年代测试,初步确定杂谷脑河第II,III,IV,VI级阶地约形成于距今54,125,248,481ka。阶地成因分析表明这些主要阶地序列主要是构造隆升的结果,因此,杂谷脑河各级主要阶地分别代表了川西高原中更新世以来的几次隆升事件。根据阶地高程和阶地形成年代确定的杂谷脑河下蚀速率为0.39m/ka,与大地测量获得的龙门山隆升速率 (0.3~0.4m/ka) 相一致。  相似文献   

8.
青弋江是长江下游最大的一条支流,发源于安徽省黄山北麓。野外考察发现青弋江在泾县段共发育了三级河流阶地,其中最高阶地(T3)存在两个天然剖面,即CB-T3剖面和SJ-T3剖面。运用电子自旋共振(ESR)测年法,并结合相关文献资料,确定青弋江泾县段最高阶地的形成年代并探讨其构造气候意义。研究结果表明:青弋江泾县段最高阶地的年代约900 ka B.P.,是早中更新世过渡时期河流作用的产物;青弋江泾县段900 ka B.P.阶地是可能是构造抬升和东亚夏季风变化共同作用下的产物,其中构造抬升为阶地的形成提供了河流下切的动力条件,而东亚夏季风的强度变化为阶地的形成提供了气候条件。研究结果有助于为长江中下游地区的河流地貌研究提供基础数据和参考资料。  相似文献   

9.
山西中条山北麓断裂夏县段新构造运动   总被引:2,自引:0,他引:2  
通过分析夏县段中条山北麓山麓剥蚀面上的黄土地层,认为山麓剥蚀面形成于2.4 Ma以前。与邻近盆地内钻孔的研究成果对比,得到中条山北麓断裂第四纪以来的垂直活动幅度约700 m,抬升速率为0.29 mm/a。GPS测量得到断层将末次冰期极盛期形成的冲沟阶地垂直错断7 m,垂直活动速率为0.28~0.5 mm/a。探槽揭示,距今2 万年以来断层有四次活动--距今8000 年之前、距今4100 年前后、距今3100 年和距今720 年以后。断距分别为大于2m、0.6m、1.55 m和0.25 m。断层活动速率为0.22~0.55 m/a。  相似文献   

10.
对若尔盖盆地进行实地考察,选取盆地西端黄河出口段典型的一级阶地沉积序列为研究对象。通过沉积物粒度和端元特征分析及OSL测年断代,对若尔盖盆地出口段的环境变化进行研究。研究结果表明:阶地底部的河床相砂卵石与河漫滩沙层构成了二元结构沉积层,其中河漫滩沙层夹有5.0—4.2 ka B.P.期间堆积形成的浅洼地泥沼土透镜状层,表明该河段黄河一级阶地从5.0 ka B.P.开始形成。河漫滩上为高原强劲风力改造成的风沙层,夹有古洪水滞流沉积层组,表明4.2—4.0 ka B.P.期间气候恶化,黄河源曾发生多期特大洪水事件。4.0—2.8 ka B.P.期间气候湿润,阶地面浅洼地有淤泥质沼泽形成。其后沙尘暴搬运堆积的粗粉沙覆盖阶地面,形成了风成黄土,其上部经生物风化成壤改造,发育成为具有团粒构造的现代亚高山草甸黑土土壤层。  相似文献   

11.
鄂尔多斯高原周缘黄河阶地的形成与青藏高原隆升   总被引:1,自引:0,他引:1  
构造运动和和气候变化是河流阶地形成的两个重要因素。学术界对于构造运动与气候变化中哪个因素是河流阶地形成的控制因素尚未形成一致观点。本文选择位于鄂尔多斯高原周缘的河流阶地,综述了前人在兰州段、中卫段和晋陕峡谷段3个河段的黄河阶地上的研究成果,结合2万年以来的古洪水记录与古地震活动等证据,对比了河流阶地形成、气候变化以及青藏高原的幕式隆升的时间。对比结果显示,鄂尔多斯高原周缘多级河流阶地的形成时间与青藏高原阶段性隆升的时间比较一致,而与气候冰期—间冰期变化之间没有明显规律,这一结果支持构造运动是鄂尔多斯高原周缘的河流阶地形成的控制因素。  相似文献   

12.
Based on field landscape investigations, thermoluminescence (TL), magnetostratigraphy and loess-paleosol sequence, we found that there are at least four Yellow River terraces, whose ages are 0.86 Ma, 0.62 Ma, 0.13 Ma and 0.05 Ma, in Yuxi Fault-Uplift (from Sanmen Gorge to Mengjin) and at least three Yellow River terraces, whose ages are 1.24 Ma, 0.25 Ma and 0.05 Ma, in Huabei Fault Depression (from Mengjin to Kouma). All the terraces have a similar structure that several meters of paleosols directly develop on the top of fluvial silt. It shows that the Yellow River incised and consequently abandoned floodplain converted to terrace during the interglacial period. Therefore, there may be a link between the formation of terraces and glacial-interglacial climatic cycles. However, the differences in the Yellow River terrace sequences and ages between Yuxi Fault-Uplift and Huabei Fault Depression indicate that the surface uplift should play an important role in the formation of these terraces.  相似文献   

13.
ZHAO Jingbo 《地理学报》2005,15(4):475-483
On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the first, second, third and fourth major changes have taken place since the formation of the Loess Plateau, and the fifth major change will happen in 100 years. The first major change, which occurred at about 2.50 Ma BP, was a transition from red earth plateau to the Loess Plateau, and reflects the climate from the warm-sub-humid to the alteration between cold-and-dry and warm-and-humid. The driving force of this first major change was climate. The second major change, which took place at about 1.60 Ma BP, was a vital transition of the main rivers in this area from non-existence to existence, and represented an important change on the Loess Plateau's neotectonic uplift from the slow rising to periodically accelerated rising, and making the river's erosion go from feeble to strong. The driving force of the second major change is tectonic uplift. The third major change which occurred at about 150 ka, was a great transition of the Yellow River's inpouring from a lake outlet to a sea outlet. At that time, the Yellow River cut the Sanmen Gorge. The transition led to the transformation of loess material from internal transportation to external transportation. The driving force of the third major change was running water erosion. The fourth one that occurred at about 1.1 ka was a change of the Loess Plateau from natural erosion to erosion accelerated by human influences. The driving force of the fourth major change is mainly human activities. The fifth major change, which is the opposite change to the fourth one, in which the motive power is human activity, too.  相似文献   

14.
1 Introduction W hatim portanttransform ations have taken place during the form ation ofthe Loess Plateau in China? Research on this problem has especially im portantscientific significance forus to learn ofthe evolution oftheLoessPlateau and predictthe f…  相似文献   

15.
宛川河阶地的年代与下切机制   总被引:4,自引:3,他引:1  
宛川河是黄河一条小规模支流,在榆中盆地中发育了至少四级堆积阶地。以"古土壤断代法"为基础,结合OSL测年和14C测年,较准确的确定了宛川河四级阶地形成的年代为330、130、50和10 ka。区域构造表明榆中盆地相对下陷,地面抬升不是引起河流下切的主要原因,同时阶地位相说明作为宛川河侵蚀基准面的黄河对宛川河下切影响只限于距河口不远的一小段距离。每级阶地面上都堆积一层古土壤指示宛川河下切于古土壤开始发育时期,对应于气候由冷干向暖湿转换的时期,河流下切的主要原因是气候变化。  相似文献   

16.
黄河三门峡至扣马段的阶地序列及成因   总被引:1,自引:0,他引:1  
Based on field landscape investigations, thermoluminescence (TL), magnetostratigraphy and loess-paleosol sequence, we found that there are at least four Yellow River terraces, whose ages are 0.86 Ma, 0.62 Ma, 0.13 Ma and 0.05 Ma, in Yuxi Fault-Uplift (from Sanmen Gorge to Mengjin) and at least three Yellow River terraces, whose ages are 1.24 Ma, 0.25 Ma and 0.05 Ma, in Huabei Fault Depression (from Mengjin to Kouma). All the terraces have a similar structure that several meters of paleosols directly develop on the top of fluvial silt. It shows that the Yellow River incised and consequently abandoned floodplain converted to terrace during the interglacial period. Therefore, there may be a link between the formation of terraces and glacial-interglacial climatic cycles. However, the differences in the Yellow River terrace sequences and ages between Yuxi Fault-Uplift and Huabei Fault Depression indicate that the surface uplift should play an important role in the formation of these terraces. Foundation: Science and Technology Planning Project of Yunnan Province, No.2007D199M; National Natural Science Foundation of China, No.40462002; No.40161002 Author: Su Huai (1977–), Ph.D, specialized in geomorphology and Quaternary geology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号