首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-scale mining and mineral processing at the Webbs Consols polymetallic PbZnAg deposit in northern New South Wales, Australia has caused a significant environmental impact on streams, soils and vegetation. Unconfined waste rock dumps and tailings dams are the source of the problems. The partly oxidised sulphidic mine wastes contain abundant sulphides (arsenopyrite, sphalerite, galena) and oxidation products (scorodite, anglesite, smectite, Fe-oxyhydroxides), and possess extreme As and Pb (wt% levels) and elevated Ag, Cd, Cu, Sb and Zn values. Contemporary sulphide oxidation, hardpan formation, crystallisation of mineral efflorescences and acid mine drainage generation occur within the waste repositories. Acid seepages (pH 1.9–6.0) from waste dumps, tailings dams and mine workings display extreme As, Pb and Zn and elevated Cd, Cu and Sb contents. Drainage from the area is by the strongly contaminated Webbs Consols Creek and although this stream joins and is diluted by the much larger Severn River, contamination of water and stream sediments in the latter is evident for 1–5 km, and 12 km respectively, downstream of the mine site. The pronounced contamination of local and regional soils and sediments, despite the relatively small scale of the former operation, is due to the high metal tenor of abandoned waste material and the scarcity of neutralising minerals. Any rehabilitation plan of the site should include the relocation of waste materials to higher ground and capping, with only partial neutralisation of the waste to pH 4–5 in order to limit potential dissolution of scorodite and mobilisation of As into seepages and stream waters.  相似文献   

2.
Gold has been exploited intensively in the Brazilian Amazon during the past fifteen years using garimpo methods (small-scale gold mining). In this study, two gold mining areas were investigated, the municipalities of Pocone and Alta Floresta located in the state of Mato Grosso. Central Brazil. The elemental mercury (Hg) used in amalgamating the gold, the final stage of the ore dressing process, has caused abnormal Hg concentrations in waterways. This has occurred principally in the Amazon region, where most of the ore prospected is alluvial. Background levels of metals were determined by analyzing sediments and soils located upstream of the anthropogenic inputs and unaffected by mining activities. The study aimed to evaluate the pollution level in sediments and soils, taking into account drainage waters directly affected by gold mining. ‘Geoaccumulation indexes’ (Igeo) of Hg in sediments from both study areas were used to assesses the pollution level in the aquatic environment. The geoaccumulation indexes of Hg in sediments of the Bento Gomes River in Pocone indicate a relatively high degree of pollution at some sites, even reaching class 4 (1.85 mg/kg). However, when the river reaches the Pantanal swamp, Hg concentrations drop considerably to 0.30 mg/kg. This drop seems to be due to accumulation of metals in the sediments of a lake (sampling site PG-24), which retains most of the sediments transported by the Bento Gomes River. Accumulation of metals in the lake also occurred for Cu, Pb, Zn, Fe and Mn. In the region of Alta Floresta, total Hg concentrations in sediments of the Teles Pires River were studied in the grain size fractions < 74 μm and > 74 μm. Hg concentrations in bottom sediments of this river were higher than those found in the Pocone region, with increases of 1.5 to 30 times the background, and thus reaching an Igeo up to class 5.  相似文献   

3.
Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of `yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyöngyösoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30–40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30–40 years.  相似文献   

4.
This study presents a diagnostic of the current state of 114 stream sediment samples by their elemental concentrations (Sb, Cd, Pb, As, Cu, Zn, Ni, Cr, and Hg), collected from Ighardayane upstream on an area of 15 km2 located at the SE part of central Morocco where Tourtit and Ichoumellal, two abandoned mining sites of Stibnite, are located. Several approaches were used to model the analysis (i) enrichment factor (EF), (ii) sediment pollution index (IPS), (iii) probable effect concentration-quotients (PEC-Qs), and (iv) potential ecological risk index (PERI). Results show highly contaminated areas around the old mining sites by Sb As, Pb, and Cd. Cadmium and lead show 86.9 and 12.29% (respectively) of trace element pollution according to sediment pollution index. Twenty-eight percent of the sampled area is potentially highly toxic because of the presence of Hg, Pb, and Cd. The very similar distribution of pollution and toxicity of most analyzed trace elements may originate from the same source, which corresponds to mining wastes where we recorded the highest pollution and toxicity degrees. This environmental issue represents the combination of Tourtit and Ichoumellal anthropic sources responsible of Sb, As, Pb, and Cd release and a probable natural source of Hg “that needs a further study,” which contribute in the degradation of an aquatic ecosystem of the same area. Therefore, both ecotoxicological analysis and stream sediment quality management should be carried out to control this aquatic ecosystem toxication.  相似文献   

5.
矿产资源的长期勘探、开采和冶炼活动给大冶铁山地区的自然生态环境造成了严重破坏.对该区西港河、东港河河水和水系沉积物中重金属元素分布特征的研究结果表明,该区矿山开采和冶炼活动形成的重金属污染元素主要为Cd、As、Zn;其主要污染源为冶炼厂排放的废水,其次是采矿废弃物堆积渗漏水;重金属元素在河水与水系沉积物中的空间分布特征较相似,但水系沉积物中元素质量分数比河水中的普遍增高,元素变化的剧烈程度加剧.  相似文献   

6.
The presence of Hg in the fish of the lakes from the Cu-Zn-Au mining region of Chibougamau (Canada) represents a serious source of concern for the health of local sports and subsistence fishers. This study focuses on identifying the origin of Hg present in the sediments of lakes with mine wastes stored in tailing facilities located on their shores. In addition to C/N ratios and determination of total Hg, Methyl Hg and other metals, a series of lignin biomarkers were used to contrast the history of the mining contamination with the nature and the intensity of terrigenous organic matter (TOM) inputs from the watersheds to the sampled lakes. It appears that sediments located nearest to mine tailings are as expected most enriched in total Hg and other metals (Cu, As, Al, Fe, Pb). Nevertheless, the presence of only small amounts of refractory TOM in these contaminated sediments could explain why only a very small fraction of Hg is found as Methyl Hg. In sediments with little or no impact by mining activities, a relationship was observed between logging activities in the lake watershed and increased TOM derived from inorganic gymnosperms soils horizons and increased Hg transport to the lakes. Nevertheless, it appears that the additional TOM transported to logged lakes is refractory enough not to promote high levels of Methyl Hg. The highest fractions of Methyl Hg relative to total Hg in lake sediments of the studied area were thus observed in relatively pristine environments where least degraded TOM is brought from the watersheds.  相似文献   

7.
In the mining district of Plombières-La Calamine (East Belgium), extensive Pb–Zn mining activities resulted in an important contamination of overbank sediments along the Geul river. Moreover, a huge amount of heavy metals is stored in a dredged mine pond tailing, which is located along the river. In the dredged mine pond tailing sediments, Pb–Zn minerals control the solubility of Zn, Pb and Cd. Although Pb, Zn and Cd display a lower solubility in overbank sediments compared to the mine tailing pond sediments, elevated concentrations of Pb, Zn and Cd are still found in the porewater of the overbank sediments. The considerable ‘actual’ and ‘potential’ mobility of Zn, Pb and Cd indicates that the mine pond tailing sediments and the overbank sediments downstream from the mine pond tailing represent a considerable threat for the environment. Besides the chemical remobilisation of metals from the sediments, the erosion of overbank sediments and the reworking of riverbed sediments act as a secondary source of pollution.  相似文献   

8.
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the “natural background level”). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of 206Pb/207Pb ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the 206Pb/207Pb ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (206Pb/207Pb between 1.04 and 1.10), emitted during the last 50 years.  相似文献   

9.
Ten heavy metals, namely, Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn were partially extracted using aqua regia digestion method and analysed by ICP-AES from 56 stream sediment samples collected from River Orle, Igarra area, southwestern Nigeria. The analytical results were used to produce geochemical distribution maps for the elements and were subjected to univariate statistical analysis in order to evaluate the distribution and abundance of the heavy metals in the study area. The degree of pollution of these stream sediments by these heavy metals was evaluated by calculating such parameters as enrichment factors (EF), as well as pollution load and geo-accumulation indices (PLI and Igeo). Co, Cr, Cu, Ni, Pb and Zn are widely distributed in the drainage system while the distribution of Ag, Cd, As and Hg is restricted to only parts of the drainage system with Ag and Cd being localized to one sample site each near Epkeshi in the southern part of the study area. Cr and Pb display anomalously high concentrations, each from a site, also in the same locality where Ag and Cd were detected, indicating the likelihood that the four elements, Cr, Pb, Ag and Cd, are genetically related. Calculation of the enrichment factor (EF), pollution load index (PLI) and geo-accumulation index (Igeo) yielded results that indicate that all the 56 stream sediment sites, except one located about 4 km southeast of Epkeshi in the southern part of the Orle drainage system, are practically unpolluted by heavy metals. The relatively high metal concentration of this anomalous site having Pb EF of 62.5, PLI of 1.14 and Pb Igeo of 2.44 signifies Pb pollution. Both natural and anthropogenic sources of the Pb contamination around Epkeshi locality are possible. In conclusion, the levels of concentrations of heavy metals in the study area, in general, do not constitute any serious environmental risk except for Pb which needs to be monitored at only one site in the study area. Therefore the concentration ranges for the different heavy metals in the study area can serve as baseline environmental data against which the degree of pollution of these heavy metals can be evaluated in future.  相似文献   

10.
小秦岭金矿区小麦和玉米重金属的健康风险评价   总被引:3,自引:0,他引:3  
重金属污染引发的农产品质量安全问题已成为全社会关注的焦点。为了解小秦岭金矿开发引起的重金属污染风险,采集了同点位的农田土壤、小麦和玉米籽粒样品,测定了其中Hg、Pb、Cd、Cr、As、Cu和Zn的含量及其在土壤中的形态;采用指数法和RAC风险评价法分析了土壤重金属的污染风险,采用转移因子和目标风险指数法评价了小麦、玉米籽粒中重金属的健康风险。结果表明:小秦岭金矿区土壤中Hg、Pb、Cd、Cu、Zn含量受矿业活动影响强度大,在土壤中累积明显;土壤中Hg、Cd、Pb、Cu总量超过了国家限值,呈现污染;Cd、Hg、Cu具有潜在生态风险。小麦和玉米籽粒中Pb以及玉米籽粒中的Cd的平均含量高于国家标准,呈现一定程度的污染;部分小麦样品中的Hg、Cd和部分玉米样品中的Cd超过WHO/FAO安全限值,小麦和玉米籽粒中度Pb平均含量超过欧盟安全标准,说明具有潜在的健康风险。重金属的转移因子表明Cd、Zn及Cu比其他重金属更容易从土壤转移到小麦和玉米籽粒中;通过小麦对重金属的摄入量略高于玉米,远低于WHO/FAO推荐剂量;目标风险指数评价表明,只消费小麦或玉米基本不产生健康风险,但同时消费矿区生长的小麦和玉米具有较高的Pb健康风险。  相似文献   

11.
An intense, but localized rainfall event in February 2003, led to the severe erosion and failure of a tailings disposal impoundment at the Abarόa Antimony Mine in southern Bolivia. The failure released approximately 5,500 m3 of contaminated tailings into the Rio Chilco-Rio Tupiza drainage system. The impacts of the event on sediment quality are examined and compared to contamination resulting from historic mining operations in the headwaters of the basin. Of primary concern are contaminated floodplain soils located along downstream reaches of the Rio Tupiza which were found to contain lead (Pb), zinc (Zn), and antimony (Sb) concentrations that locally exceed Canadian, German, and Dutch guidelines for agricultural use. Spatial patterns in sediment-borne trace metal concentrations, combined with Pb isotopic data, indicate that Pb, Zn, and Sb are derived from three tributary basins draining the Abarόa, Chilcobija, and Tatasi-Portugalete mining districts. Downstream of each tributary, geographical patterns in trace metal concentrations reflect local geomorphic changes throughout the drainage system. Trace metal concentrations within the Rio Chilco decrease rapidly downstream as a result of dilution by uncontaminated sediments and storage of metal enriched particles (e.g., sulfide minerals) in the channel bed as a result of ongoing aggradation. Storage in the floodplains is limited. These processes significantly reduced the dispersal and, thus, the relative environmental affects of tailings eroded from the Abarόa Mine during the 2003 flood. In contrast, storage of Pb, Zn, and Sb in floodplains along the Rio Tupiza is significant, the majority of which is derived from historic mining operations, particularly mining within the Tatasi-Portugalete district.  相似文献   

12.
铜陵矿山酸性排水及固体废弃物中的重金属元素   总被引:8,自引:0,他引:8  
在调查中国铜陵凤凰山铜矿和新桥硫铁矿两种不同类型矿山固体废弃物特征的基础上,研究了矿山尾矿和废石产生酸性排水的可能性及其差异以及矿山固体废弃物中重金属元素的赋存形式。结果表明,凤凰山铜矿的尾矿基本不产生矿山酸性排水,而新桥硫铁矿采矿废石产生矿山酸性排水,并且凤凰山铜矿的尾矿和新桥硫铁矿采矿废石中重金属元素的赋存形式也有差异,前者重金属Cu、Pb、Zn、Cd、As、Hg主要赋存于硅酸盐态中,而后者在还原态中有较高的含量,这反映了在地表条件下尾矿中大量重金属元素已经发生了迁移,而采矿废石已经开始氧化,且酸性排水的存在更有利于废石中重金属元素的迁移和扩散,进而导致矿区周围环境的污染。  相似文献   

13.
Gold mining activities in Apolobamba area, northwest of La Paz, Bolivia have created serious environmental concern and great risk to human health. The current methods used to extract gold are too primitive resulting in metal contamination of soil and water. The objectives of this study were to: (1) determine the degree of metal pollution, and (2) assess the risk to human health and environment in the Apolobamba area. Soil, water, sediment samples, and mine spills were collected and analyzed. Metals including Pb, Cu, Zn, Cd, and Hg concentrations were higher in surface soils than in subsurface soils indicating active atmospheric deposition of metals. Sediment samples had elevated levels of metals probably from mine spills discharged into the Sunchulli River. Surface soils in the Sunchulli community show the highest levels of Pb and Hg in all soil samples and may pose a risk to the health of the human population and environment.  相似文献   

14.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

15.
An eco-environmental geochemical investigation was carried out in and around the Dexing mining area to determine the concentrations of heavy metals in the surface water, sediments, soils and plants. The main objective of this study is to assess the environmental situation and evaluate the transferring of heavy metals from mining activities into the food chain. Some samples of water, sediment, topsoil and plant were collected along the Lean River in the Dexing mining area. The total concentrations of Cu, Pb, Zn, Cd, and As were determined by AAS, and Hg was analyzed by cold-vapor AAS. Some indices such as ‘contamination degree‘ , ‘geoaccumulation index‘ , and ‘biological absorption coefficient‘ were used to assess eco-environmental quality. The investigation indicated a highly localized distribution pattern closely associated with the two pollution sources along the Le‘an River bank: one is strong acidity and a large amount of Cu in the drainage from the Dexing Cu mining area; and the other is the high concentrations of Pb and Zn in the effluents released from many smelters and mining, processing and extracting activities in the riparian zone. Results from the investigated localities indicated, at least in part, that some problems associated with environmental quality deterioration should be solved in the future.  相似文献   

16.
The Me?a River Valley has been a center of mining, ore processing and iron- and steel-based metallurgical industry for more than 300 a. This paper deals with stream sediments draining this area. Loads of potentially toxic metals and metal-bearing phases were investigated 10 a after the cessation of Pb and Zn mining. Sediments in the upper Me?a River Valley show significant pollution with Pb and Zn as a consequence of mining and ore processing. The highest contents of Pb and Zn were found in the Me?a tributaries, which directly drain mine waste deposits (maximum values: 19,300 mg/kg Pb and 37,900 mg/kg Zn). These results reflect transport of contaminated material from mine waste sites and indicate that the inactive mine and its mine wastes are sources of metal contamination in the surrounding environment. Contents of Cr, Ni, Cu and Co are increased in the lower Me?a River Valley, in the area of Ravne, as a result of the iron and steel industry. The contribution of the Me?a River to the metal-load in the Drava River is evident.Metal-bearing phases, identified in stream sediments by SEM/EDS, are assigned to three areas, according to their source and genesis. The Me?ica mining district source area is characterized by ore minerals of geogenic/technogenic origin (cerussite, sphalerite, smithsonite and galena), the Ravne source area is characterized by technogenic trace metal-bearing Fe-alloys, Fe-oxides and spherical trace metal-oxides and the Me?a and Drava River catchment areas are represented by geogenic metal-bearing accessory and common rock-forming minerals, such as zircon, ilmenite, rutile, sphene, barite and monazite. SEM/EDS analyses of stream sediments agree well with the results of chemical analyses and they prove to be a very useful tool for identification of metal-bearing phases and their characterization according to source and genesis.  相似文献   

17.
The influence of geomorphological factors to Hg contamination of the Idrijca River alluvial sediments because of the historical mining and ore roasting activities has been studied. Main source of Hg in alluvial sediments was dumping of ore roasting residues and mining waste into the river channel and its erosion downstream. The position of the material in relation to the geomorphological properties is highly related with its Hg content. Floodplains were found to be the most contaminated geomorphological units (mean Hg content 335 mg/kg), with Hg concentration rapidly dropping in the first terrace (155 mg/kg). The least contaminated material was found in the higher terraces (3.8 mg/kg). Sampling upstream Idrija (average Hg content is 22.1 mg/kg) shows that not only mine and ore roasting plant increased Hg levels in alluvial deposits but also contaminated sites upstream Idrija contribute to Hg contamination. Geochemical background for alluvial sediments for this area is estimated to be 0.75 mg/kg. Downstream Idrija, 9 hotspots were determined where highly contaminated material is actively eroded and carries a high risk of further contamination of the So?a River and northern Adriatic Sea ecosystems.  相似文献   

18.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

19.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

20.
A brief discussion on the mean oceanic residence time of elements   总被引:1,自引:0,他引:1  
The mean oceanic residence times of elements obtained from deposition rates in deep-sea sediments are more representative than those obtained from river-input rates. The average concentration data of dissolved S, Au, Ag, Se, As, Hg, Sb, Zn, Sn, Cu and Pb in rivers contain large pollution and/or contamination components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号