首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
登陆中国大陆不同区间的热带气旋特征初步分析   总被引:3,自引:1,他引:2  
利用地理信息系统及程序计算得到了1949—2008年登陆中国大陆的热带气旋(TC)登陆点经纬度信息,在此基础上对登陆中国大陆的TC进行分析,最终选择110~122°E海岸线为研究区域,7—9月为研究时段,且将110~122°E海岸线以1°E为间隔划分为12段,分析这12段海岸线登陆TC的基本特征发现:118°E以东的区间TC登陆前后平均维持时间及登陆前平均强度基本上为大于118°E以西的区间,登陆后平均强度东西两段相差不大;定义了TC登陆前(后)破坏潜力指数TDP1(TDP2),TDP1(TDP2)最大值出现在区间[119,120°E)([110,111°E));ENSO事件对7—9月登陆110~122°E段的TC频数、平均登陆点位置影响并不明显,对各区间登陆TC的影响也不尽相同;各区间平均TDP1冷暖事件年对比差别较大,平均TDP2在暖事件年基本上比冷事件年大;1961—2008年,各区间对应的暴雨总站次,118°E以东的区间要远大于以西的区间,就空间分布而言,较大值的分布出现在区间[119,120°E),[110,111°E)。  相似文献   

2.
The data of landfalling tropical cyclones (TCs) in China and ENSO events and the NinoZ index during 1951 to 2005 were used to study the relationships between ENSO and landfalling TCs in China. ENSO events from July to September have obvious effects on landfalling TCs in China. When El Nio persists throughout the months, the frequency of landfalling TCs is less than normal, the season of landfalling TCs is shorter, the annually first landfall is later, the annually last landfall is earlier, and the mean int...  相似文献   

3.
Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.  相似文献   

4.
应用NOAA气候预测中心提供的热带大气季节内振荡(MJO)客观业务指数及中国气象局上海台风研究所提供的西北太平洋热带气旋(TC)最佳路径资料集,定量统计榆验了MJO对夏季西北太平洋TC活动的调制作用.结果表明:MJO对TC的生成、强度、路径和登陆活动都有显著的调节作用.当高空辐合中心位于120°E~160°E(MJO位相3~5)时,西北太平洋TC生成偏少,且生成位置偏北;而当高空辐合中心位于10°W~70°E(MJO位相8~10)时,西北太平洋TC生成偏多,且生成位置偏南;随着TC强度加强,能达到显著调节作用的MJO位相逐渐减少,当高空辐合辐散中心位于70°E(MJO位相10)时,对TC强度调制最显著.在路径调节方面,MJO位相1~4和10时,TC活跃于菲律宾以东的西北太平洋上,主要路径为西北偏北行,可能登陆华东、华北;而位相5~8时,TC主要活跃在菲律宾附近及以西到南海,以偏西行路径为主,可能登陆华南.MJO对登陆华南TC也有显著影响.该定量统计检验结果可为TC活动季节内预测提供依据.  相似文献   

5.
Impacts of EI Nino Modoki (ENM), La Nina Modoki (LNM), canonical EI Nifio (CEN) and canonical La Nifia (CLN) on tropical cyclones (TCs) that made landfall over mainland China during 1951-2011 are analysed using best-track data from China, the USA and Japan. Relative to cold phase years (LNM and CLN), landfalling TCs in warm years (ENM and CEN) have a farther east genesis location, as well as longer track lengths and durations, both in total and before landfall. ENM demonstrates the highest landfall frequency, most northerly mean landfall position, and shortest after-landfall sustainability (track length and duration), which indicate a more frequent and extensive coverage of mainland China by TCs, but with shorter after-landfall influence. CEN has low landfall frequency and the most southerly mean landfall location. LNM has the most westerly genesis location, being significantly farther west than the 1951-2011 average and leading to short mean track lengths and durations both in total or before landfall, all of which are significantly shorter than the 1951-2011 average. Variations in the low-level wind anomaly, vertical wind shear, mid-level relative humidity, steering flow, the monsoon trough and the western Pacific subtropical high (WPSH) can to some extent account for the features of frequency, location, track length and duration of landfalling TCs. Since ENSO Modoki is expected to become more frequent in the near future, the results for ENSO Modoki presented in this paper are of particular significance.  相似文献   

6.
登陆台湾岛热带气旋强度和结构变化的统计分析   总被引:2,自引:0,他引:2  
利用1949—2008年共60年的《台风年鉴》、《热带气旋年鉴》资料及CMA-STI热带气旋最佳路径数据集,2001—2008年美国联合台风警报中心(JTWC)热带气旋尺度相关资料及日本气象厅(JMA)的TBB资料,统计分析西北太平洋(包括南海)热带气旋(TC)在登陆台湾过程中强度和结构变化的基本特征,主要结论有:(1)TC登陆台湾时强度为台风及以上级别的样本数占总样本数约60%,主要出现在6—9月,东部登陆TC的强度一般比在西部登陆的强;(2)大部分TC在岛上维持6 h左右,登陆时最大风速≤5级和强度为超强台风的TC穿越台湾岛时移动比较缓慢;(3)126个登陆台湾的TC样本过岛后近中心海平面气压平均增加5.61 hPa,近中心最大风速平均减小3.58 m/s,在台湾东部地区登陆TC的衰减率比在西部登陆的大3倍左右;(4)TC在登陆台湾前6 h至离岛后6 h期间其8级和10级风圈半径均明显减小,TC形状略呈长轴为NE-SW向的椭圆状,而其最大风速的半径却逐渐增大;(5)TBB分析结果显示,TC登陆台湾前,其外围对流主要出现在南侧和西侧,结构不对称,登陆以后,TC北部及东部的对流显著发展,外围结构区域对称;但中心附近的强对流则从登陆前6 h开始逐渐减弱消失。表明TC穿越台湾过程中内核结构松散、强度减弱。  相似文献   

7.
2010年西北太平洋与南海热带气旋活动异常的成因分析   总被引:1,自引:0,他引:1  
利用中国气象局热带气旋(TC)资料、NCEP/NCAR 再分析资料和美国 NOAA 向外长波辐射(OLR)等资料,分析了2010年西北太平洋(WNP)及南海(SCS)热带气旋活动异常的可能成因,讨论了同期大气环流配置和海温外强迫对TC生成和登陆的动力和热力条件的影响。结果表明,2010年生成TC频数明显偏少,生成源地显著偏西,而登陆TC频数与常年持平。导致7~10月TC频数明显偏少的大尺度环境场特征为:副热带高压较常年异常偏强、西伸脊点偏西,季风槽位置异常偏西,弱垂直风切变带位置也较常年偏西且范围偏小,南亚高压异常偏强,贝加尔湖附近对流层低高层均为反气旋距平环流,这些关键环流因子的特征和配置都不利于 TC 在WNP的东部生成。影响TC活动的外强迫场特征为:2010年热带太平洋经历了El Ni?o事件于春末夏初消亡、La Ni?a事件于7月形成的转换;7~10月,WNP海表温度维持正距平,140°E以东为负距平且对流活动受到抑制;暖池次表层海温异常偏暖,对应上空850 hPa为东风距平,有利于季风槽偏西和TC在WNP的西北侧海域生成。WNP海表温度和暖池次表层海温的特征是2010年TC生成频数偏少、生成源地异常偏西的重要外强迫信号。有利于7~10月热带气旋西行和登陆的500 hPa风场特征为:北太平洋为反气旋环流距平,其南侧为东风异常,该东风异常南缘可到25°N,并向西扩展至中国大陆地区;南海和西北太平洋地区15°N以南的低纬也为东风异常;在这样的风场分布型下,TC容易受偏东气流引导西行并登陆我国沿海地区。这是2010年生成TC偏少但登陆TC并不少的重要环流条件。  相似文献   

8.
Yao  Xiuping  Zhao  Dajun  Li  Ying 《Acta Meteorologica Sinica》2020,34(1):150-162

We used tropical cyclone (TC) best track data for 1949–2016, provided by the Shanghai Typhoon Institute, China Meteorological Administration (CMA-STI), and a TC size dataset (1980-2016) derived from geostationary satellite infrared images to analyze the statistical characteristics of autumn TCs over the western North Pacific (WNP). We investigated TC genesis frequency, location, track density, intensity, outer size, and landfalling features, as well as their temporal and spatial evolution characteristics. On average, the number of autumn TCs accounted for 42.1% of the annual total, slightly less than that of summer TCs (42.7%). However, TCs classified as strong typhoons or super typhoons were more frequent in autumn than in summer. In most years of the 68-yr study period, there was an inverse relationship between the number of autumn TCs and that of summer TCs. The genesis of autumn TCs was concentrated at three centers over the WNP: the first is located near (14°N, 115°E) over the northeastern South China Sea and the other two are located in the vast oceanic area east of the Philippines around (14°N, 135°E) and (14°N, 145°E), respectively. In terms of intensity, the eight strongest TCs during the study period all occurred in autumn. It is revealed that autumn TCs were featured with strong typhoons and super typhoons, with the latter accounting for 28.1% of the total number of autumn TCs. Statistically, the average 34-knot radius (R34) of autumn TCs increased with TC intensity. From 1949 to 2016, 164 autumn TCs made landfall in China, with an average annual number of 2.4. Autumn TCs were most likely to make landfall in Guangdong Province, followed by Hainan Province and Taiwan Island.

  相似文献   

9.
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.  相似文献   

10.
The asymmetric distribution of convection associated with tropical cyclones making landfall on the east China coast is studied with black-body temperature (TBB) data from Fengyun-2 (FY-2) geostationary weather satellite. The convection in various quadrants of the TCs is examined for the period of -24 to 6 h relative to landfall. The convection to the southern side of the TCs was much more intense than that to the northern side during the whole landfall period. The convection to the western side of the TCs was stronger than that to the eastern side for the time -8 h before and at the landfall. After landfall, the situation reverses. The asymmetric convection of the TCs was partly due to the vertical wind shear and storm motion, and partly because the process of landfall restrained the convection in relevant quadrants. Besides, the orographic uplift along the east of China was favorable to the enhancement of convection in the eastern side of the TCs. From the characteristics of convective asymmetry of the TCs landing on the south and east of China, it is known that their main difference might be the included angle between the TC path and the coastline as well as the terrain along the coast.  相似文献   

11.
The present study revealed that a climate regime shift occurred during the 1988–1991 period involving changes in tropical cyclone (TC) intensity (central pressure, maximum sustained wind speed) during the summer near 30°N in East Asia. Climatologically, TC intensity at 110°–125°E near 30°N (over Mainland China) is the weakest at that latitude while the strongest is found at 125°–130°E (over Korea). The TC intensity during the 1991–2015 (91–15) period had strengthened significantly compared to that of the 1965–1988 (65–88) period. The strengthening was due to a significantly lower frequency of TCs that passed through Mainland China during the 91–15 period. This lower frequency of was due to anomalous northeasterlies blown from the anomalous anticyclonic circulation located over continental East Asia and that had strengthened along the coast. Instead, TCs mainly followed a path from eastern regions in the subtropical western North Pacific to Korea and Japan via the East China Sea due to anomalous cyclonic circulations that had strengthened in the western North Pacific. In addition, low vertical wind shear had formed along the mid-latitude region in East Asia and along the main TC track in the 91–15 period, and most regions in the western North Pacific experienced a higher sea surface temperature state during the 91–15 period than in the previous period, indicating that a favorable environment had formed to maintain strong intensities of TCs at the mid–latitudes. The characteristics of TCs at the lower latitudes caused a strong TC intensity at the time of landfall in Korea and a gradual shifting trend of landing location from the western to southern coast in recent years.  相似文献   

12.
Based on observed rainfall data, this study makes a composite analysis of rainfall asymmetry in tropical cyclones(TCs) after making landfall in Guangdong province(GD) during 1998—2015. There are 3.0 TCs per year on average making landfall in GD and west of GD(WGD) has the most landfall TCs. Most of TCs make landfall in June,July, August, and September at the intensities of TY, STS, and TS. On average, there is more rainfall in the southwest quadrant of TC in CGD(center of GD), WGD, and GD as a whole, and the maximum rainfall is located in the southwest near the TC center. The mean TC rainfall in the east of GD(EGD) leans to the eastern side of TC. The TC rainfall distributions in June, July, August, and September all lean to the southwest quadrant and the maximum rainfall is located in the southwest near the TC center. The same features are found in the mean rainfall of TD, TS, STS, TY,and STY. The maximum rainfall is mainly in the downshear of vertical wind shear. Vertical wind shear is probably the dominate factor that determines asymmetric rainfall distribution of TCs in GD. Storm motion has little connection with TC rainfall asymmetry in GD.  相似文献   

13.
The tropical cyclone (TC) track data provided by the Joint Typhoon Warning Center (JTWC) of the U.S. Navy over the western North Pacific (including the South China Sea) from 1945 to 2005 are employed to analyze the temporal and spatial variations of TCs of different intensity scales. Most of the TCs occurred between 15° and 25°N, from the northern part of the South China Sea to the eastern part of the Bashi Channel until near 140°E. Most of the severe and super typhoons occurred over waters from the eastern part of the Bashi Channel to about 140°E. The TCs in a weakening or steady state take up a weak majority in the area west of 123°E and north of 20°N; those in an intensifying or steady state are mostly found in the area east of 123°E and south of 20°N. For severe tropical storms, typhoons, severe typhoons, and super typhoons, their average decaying rates are all greater than the respective average growing rates; for tropical storms, however, the average decaying rate is smaller than the average growing rate. Generally speaking, the stronger the TC, the faster the intensification (weakening) is. The percentage of weak TCs is higher in June to August while that of strong TCs is higher in September to November. There are annual, interannual, and interdecadal variations in the observed number (every 6 h) and frequency of TCs at different intensity scales. As far as the long-term trend is concerned, the frequency and observed number of tropical storms have a significant linear increase, but the averaged intensity and number of TCs of other intensity categories do not exhibit such a significant linear trend. In E1 Nifio years, the number and percentage of super typhoons are significantly higher, while the total number of tropical storms, severe tropical storms, typhoons, and severe typhoons is significantly lower, and the mean intensity of TCs is prominently stronger; in La Nifia years, however, the opposite comes true.  相似文献   

14.
Using 1°×1° final analysis(FNL) data from the National Centers for Environmental Prediction(NCEP),precipitation data from the Tropical Rainfall Measuring Mission(TRMM) and the best-track tropical cyclone(TC)dataset provided by the Japan Meteorological Agency(JMA) for June-August of 2000-2009, we comprehensively consider the two factors low-level moisture channel and interaction between TCs and mid-latitude systems and implement a statistical analysis of remote precipitation in East Asia to the north of 0° and to the west of 150° E. 48 cases of remote precipitation occurred in this period, which are categorized into five classes. After a composite analysis of the different classes, the main systems at 850 h Pa and 500 h Pa that impact the remote precipitation are as follows:TC, mid-latitude trough, subtropical high and water vapor channel. In particular, the water vapor channel which usually connects with Indian monsoon has the most significant impact on remote heavy rainfall. Another important factor is the mid-latitude trough. The type of north trough/vortex-south TC remote precipitation events happen most frequently,accounting for 68.8% of the total incidence. Most remote precipitation events occur on the right side of the TC path(representing 71% of the total number). At 200 h Pa, the remote precipitation events usually occur on the right rear portion of a high-altitude jet stream, and there is an anti-cyclonic vortex to the east and west of the TCs. When there is no anti-cyclonic vortex to the east of the TC, the TC is relatively weak. When the remote precipitation occurs to the northwest of the TC and there is a trough in the northwest direction, the TC is relatively strong. Numerical experiments are carried out using Weather Research and Forecast(WRF) model. The results shows that the TC plays a main role in producing the heavy precipitation and results in the enhancement of precipitation by impacting the water vapor channel.  相似文献   

15.
45年间影响中国东海附近海区热带气旋统计特征   总被引:2,自引:2,他引:0  
根据1961-2005年有编号的热带气旋资料,从时间和空间两个方面统计分析了影响中国东海附近海区(117°-131°E,22°-33°N)的热带气旋特征。结果表明,统计区域内的影响热带气旋具有明显的年际变化特征,年平均频数为8.6个,年频数与厄尔尼诺具有很好的相关性,厄尔尼诺年为影响热带气旋少频年;影响热带气旋主要集中在6-10月,持续时间多在1-4天之间;影响热带气旋大多生成于菲律宾以东洋面和关岛附近洋面,从统计区域的南侧和东侧进入,主要有西北、东北和转向3条移动路径。  相似文献   

16.
In this work,an index of tropical 20-90 d oscillation(intra-seasonal oscillation;ISO)in the western North Pacific(WNP)was determined via the combined empirical orthogonal function(EOF)method using daily outgoing longwave radiation(OLR)field data from the National Oceanic and Atmospheric Administration(NOAA),daily wind field data(at 850 hPa)from the European Centre for Medium-Range Weather Forecasts(ECMWF)and referencing the Madden-Julian oscillation(MJO)index proposed by Wheeler and Hendon.An in-depth investigation was conducted to examine the impact of the ISO on changes in tropical cyclone(TC)tracks in the WNP during different ISO phases.The research results indicate that during the easterly phase of the ISO,under the impact of the northeastern airflow of anti-cyclonic ISO circulation,the easterly airflow south of the western Pacific subtropical high is relatively weak,and TCs generated in the subtropical high tend to change their tracks east of 140°E;during the westerly phase,there is a relatively high probability that TCs change their tracks west of 140°E.This work also analyzed the ISO flow field situation in cases of typhoons and determined that the track of a tropical cyclone will experience a sudden right turn when the center of the ISO cyclonic(anti-cyclonic)circulation coincides with that of the cyclone.  相似文献   

17.
西北太平洋热带气旋强度变化的统计特征   总被引:14,自引:9,他引:14  
用中国气象局整编的1949-2003年共55年的《台风年鉴》和《热带气旋年鉴》资料,依据平均值与标准差的数学涵义,给出了TC突然增强、缓慢增强、强度稳定、缓慢减弱和突然减弱的标准,分析了西北太平洋热带气旋(TC)强度变化的年代际、年际、月际、日变化和区域分布的基本特征。结果表明:(1)1960年代以前,T℃的年平均增强或减弱幅度较小。(2)在TC出现较为频繁的夏秋季节,8月份TC强度变幅较小。TC在14时(北京时,下同)最易发展,20时最易减弱;08时TC增强速度最快,02时最慢;02时TC减弱速度最快, 20时最慢。(3)TC频数和增强TC频数的高值区位于海南岛以东的南海北部中国近海区域和菲律宾以东洋面,减弱类TC频数极值区在吕宋岛及其东部海域、海南岛以西的北部湾、广东沿岸。(4)TC突然增强不出现在30°N以北的中高纬地区和0—5°N的低纬地区。TC突然减弱多出现在125°E以西的中国近海大范围海域,在0~5°N的低纬地区基本不出现。  相似文献   

18.
Summary The 1998/99 tropical cyclone (TC) season over northwest Australia was notable for an above average number of TCs (seven compared to five on average) and a number of unusually intense TCs making landfall (three category 5 TCs). The active 1998/99 TC season is attributed here to a combination of a number of broad-scale features over the south east Indian Ocean and the Australian region, with identifiable precursors favoring tropical cyclogenesis. These precursors include: below normal MSLP, abnormally warm ocean temperatures, above average relative humidity in the low- to mid-tropospheric levels and weak wind shears in the genesis region under study, that is, between 10° S to 20° S and 105° E to 135° E. These favorable conditions first appeared as early as August 1998. The appearance of favorable conditions so far ahead of the TC season indicates that they are the likely cause of the enhanced TC activity rather than simply an effect. Although the season as a whole was an active one, strong intra-seasonal variability was evident in that there were two named TCs in December 1998, forming within three days of each other. Only one formed in January 1999 and none in February. By contrast, in March and April 1999, TC activity was enhanced once again, with four named TCs, three of which attained category 5 status. The importance of the above-mentioned precursors in favoring tropical cyclogenesis during the 1998/99 season is discussed in terms of seasonal time scales of the preceding spring and down to synoptic and mesoscale time scales ranging from several days to 48 hours or less. Received October 5, 2001 Revised December 28, 2001  相似文献   

19.
The intensity, landing time, track trend and intensity variation of tropical cyclones (TCs) after landfall are analyzed using the TCs data (of best track from the China Meteorological Administration) between 1949 and 2006 for the western North Pacific and South China Sea. The trend differences of track and intensity between the TCs that directly land in East China and those making the second landfall in East China after landing in Taiwan Island are categorically discussed. The results show that the first kind of landing TCs are more likely to go northward or turn while the second kind of TCs have a larger tendency to keep going northwest. The intensity of the first kind of TCs is more persistent than the second one. There is a higher percentage for the intensity to be weakened significantly if the TCs keep going west to northwest or southwest after landing.  相似文献   

20.
1991—1992年ENSO事件的特征   总被引:1,自引:0,他引:1       下载免费PDF全文
根据美国国家海洋大气局气候分析中心(CAC)和中国气象局气候监测公报所提供的海-气资料,综合分析了1991-1992年ENSO事件的形成、发展过程。这次ENSO事件的主要特点是:①在ENSO事件爆发前一年内热带太平洋海气特性频频呈现异常,暖水堆积在赤道中太平洋(5°N-5°S,160°E-160°W)约12个月,然后自西向东传输,爆发1991-1992年ENSO事件。②对ENSO事件作出响应的西太  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号