首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The tectonic and geodynamic evolution of the southern European part of Russia from the Donets Basin (Donbas) and the northern Caspian region in the north to the Mountainous Crimea and the Greater Caucasus in the south is considered. This territory embraces the southern margin of the East-European craton and the northern periphery of the Tethys Ocean, which originated in the Neoproterozoic, as well as its marginal seas till the formation of the modern Azov-Black Sea and Caspian basins.  相似文献   

2.
We review the geological and geophysical structural framework of the deep Black Sea and Caspian Sea basins. Based on seismic evidence and subsidence history, we conclude that the deep basins have an oceanic crust formed in a marginal sea environment. We propose that the present deep basins are remnants of a much greater marginal sea formed during three separate episodes during the Mesozoic: in the Middle Jurassic, Upper Jurassic and Late Cretaceous. A tentative sketch of the geologic evolution of the area is presented. The marginal sea reached its greatest extent in the Early Tertiary when it was about 900 km wide and 3000 km long. The central part of the marginal sea has since disappeared during the collision between the Arabian promontory and the Eurasian margin.  相似文献   

3.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

4.
《Earth》2006,77(3-4):191-233
A Cenozoic tectonic reconstruction is presented for the Southwest Pacific region located east of Australia. The reconstruction is constrained by large geological and geophysical datasets and recalculated rotation parameters for Pacific–Australia and Lord Howe Rise–Pacific relative plate motion. The reconstruction is based on a conceptual tectonic model in which the large-scale structures of the region are manifestations of slab rollback and backarc extension processes. The current paradigm proclaims that the southwestern Pacific plate boundary was a west-dipping subduction boundary only since the Middle Eocene. The new reconstruction provides kinematic evidence that this configuration was already established in the Late Cretaceous and Early Paleogene. From ∼ 82 to ∼ 52 Ma, subduction was primarily accomplished by east and northeast-directed rollback of the Pacific slab, accommodating opening of the New Caledonia, South Loyalty, Coral Sea and Pocklington backarc basins and partly accommodating spreading in the Tasman Sea. The total amount of east-directed rollback of the Pacific slab that took place from ∼ 82 Ma to ∼ 52 Ma is estimated to be at least 1200 km. A large percentage of this rollback accommodated opening of the South Loyalty Basin, a north–south trending backarc basin. It is estimated from kinematic and geological constraints that the east–west width of the basin was at least ∼ 750 km. The South Loyalty and Pocklington backarc basins were subducted in the Eocene to earliest Miocene along the newly formed New Caledonia and Pocklington subduction zones. This culminated in southwestward and southward obduction of ophiolites in New Caledonia, Northland and New Guinea in the latest Eocene to earliest Miocene. It is suggested that the formation of these new subduction zones was triggered by a change in Pacific–Australia relative motion at ∼ 50 Ma. Two additional phases of eastward rollback of the Pacific slab followed, one during opening of the South Fiji Basin and Norfolk Basin in the Oligocene to Early Miocene (up to ∼ 650 km of rollback), and one during opening of the Lau Basin in the latest Miocene to Present (up to ∼ 400 km of rollback). Two new subduction zones formed in the Miocene, the south-dipping Trobriand subduction zone along which the Solomon Sea backarc Basin subducted and the north-dipping New Britain–San Cristobal–New Hebrides subduction zone, along which the Solomon Sea backarc Basin subducted in the west and the North Loyalty–South Fiji backarc Basin and remnants of the South Loyalty–Santa Cruz backarc Basin subducted in the east. Clockwise rollback of the New Hebrides section resulted in formation of the North Fiji Basin. The reconstruction provides explanations for the formation of new subduction zones and for the initiation and termination of opening of the marginal basins by either initiation of subduction of buoyant lithosphere, a change in plate kinematics or slab–mantle interaction.  相似文献   

5.
6.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

7.
E. Honza  K. Fujioka 《Tectonophysics》2004,384(1-4):23-53
Results of the geological and geophysical surveys in the Daito ridges and basin in the northern West Philippine Basin suggest that the Daito Ridge was an arc facing toward the south from the Late Cretaceous to the Early Tertiary. The Late Cretaceous and Tertiary history of Southeast Asia is evaluated based on these data in the Daito ridges and basins and reconstructed based on overall plate kinematics that have operated in this area. During the Late Cretaceous, the Daito Ridge and the East Philippine Islands were positioned along the boundary between the Indian and Pacific Plates. The western half of the Philippines setting on the Indian Plate approached from the south and collided with the East Philippine–Daito Arc either during the latest Paleocene or the earliest Eocene. It is inferred that the bulk of the Philippine archipelago rotated clockwise and Borneo spun counterclockwise during the Tertiary.From the reconstruction, the formation of backarc basins and their spreading direction are assessed. As a result, some primary causes and significant characteristics are suggested for the opening of backarc basins in Southeast Asia. First, opening of some backarc basins commenced with or was triggered by collisions. Second, backarc basins opened approximately parallel to oceanic plate motion. Third, the formation of some backarc basins was triggered by the approach of a hot spreading center. Fourth, the spreading mode or direction of backarc basins was greatly affected by the configuration of the surrounding continent and was also rearranged to spread approximately parallel to oceanic plate motion.The formation of backarc basins and their spreading direction can be reasonably explained by plate kinematics. However, the generative force responsible for their formation is possibly within the subduction system, particularly to form horizontal tensional force in backarc side.  相似文献   

8.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

9.
陆弧和弧前盆地是俯冲体系中具有密切联系的构造单元。中生代以来,华南受多期板块俯冲的控制,发育大规模岩浆岩带及海域广泛分布的弧前盆地。但陆域弧岩浆岩较少,海域又缺乏足够钻井,各时期陆弧的位置存在较大争议,同时,南海北部至东海一带弧前盆地也缺乏系统认识,因此,亟须新的研究思路深化对华南晚中生代俯冲体系和俯冲过程的认识。本文以前人研究为基础,对海域钻遇中生界的典型钻井进行了详细分析,系统开展了海域盆地区域构造和沉积对比,将弧前盆地发育与岛弧变迁相结合综合分析。结果表明早侏罗世—早白垩世陆弧位于南海北部—东海靠近陆域一侧,经历了早侏罗世局限陆弧、中晚侏罗世沿海陆弧带、早白垩世向海沟方向的迁移。在此过程中,华南海域弧前盆地群于中侏罗世正式形成,早白垩世发育盆缘角度不整合,粗碎屑相带向海沟方向迁移,晚白垩南海北部与东海各自进入新的构造体制,结束弧前盆地的发育。华南沿海海域中生代盆地的发育可为陆弧的展布提供重要约束,弧岩浆岩带的迁移控制了弧前盆地的演化。  相似文献   

10.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

11.
Geologic evolution of Bulgaria in light of plate tectonics   总被引:1,自引:0,他引:1  
The Balkanide is a mobile belt within a micro-continent, which included both the Moesian Platform and Rhodope Massif. This micro-continent was rotated counter-clockwise during the Jurassic mainly in response to the sea-floor spreading of the Vardar ophiolite trough. The rotation led to the consumption of Triassic Tethys along the Dobrogea—Crimea—Caucasus Trend, producing the Cimmerian orogenic belt. Cretaceous rotation of the Italo-Dinaridian micro-continent led to the consumption of the Vardar ophiolites. An island arc (Macedonia—Rhodope—North Anatolia) was present at the consuming plate margin. Middle and Late Cretaceous marginal basins behind this arc included the Srednogorie and the Black Sea. Submarine volcanics, radiolarian cherts, and hemipelagic marls were deposited in the Srednogorie “eugeosyncline”. This sequence was folded during the early Tertiary Alpine orogeny, when the front of the Rhodope Massif was overthrust onto the Balkanides. The Black Sea meanwhile remained undeformed and can thus be considered a fossilized Cretaceous marginal basin.  相似文献   

12.
侏罗系是柴达木盆地最重要的源储层系之一。通过野外地质、剖面实测、地震解释、显微构造分析等大量系列资料的综合应用与分析,认为研究区自中生代以来,经历了印支期右行逆冲-走滑构造运动、早—中侏罗世伸展运动、早白垩世北西-南东向挤压及新生代南北向挤压运动,它们与早侏罗世至中侏罗世早期(小煤沟组至大煤沟组)在NE向伸展应力场作用下形成的断陷盆地、中侏罗世晚期至晚侏罗世(彩石岭组—洪水沟组)热力沉降坳陷盆地、早白垩世南北向挤压坳陷盆地密切相关。侏罗纪原型盆地发育三类沉积边界,即盆缘不整合边界(缓坡型和陡坡型边界)、盆内正断层边界、后期逆断层改造边界。不同的现存盆地边界类型对原型盆地恢复的作用不同。侏罗纪盆地以东昆仑构造带为界具有"北陆南洋"的古地理格局,柴达木地区的侏罗纪盆地主要发育在沿岸造山带和岛弧带的山前坳陷以及薄弱的柴北缘加里东俯冲碰撞带之上,形成相对分隔的独立盆地群。柴达木早、中、晚侏罗世原型盆地的分布因受到古特提斯洋向北偏东方向的俯冲作用和阿尔金断裂左旋走滑作用的影响,其沉积中心和沉积范围呈现出从早到晚向东北方向逐渐迁移的规律。早侏罗世盆地的沉积沉降中心主要位于柴北缘西部的冷湖—马海一带,中侏罗世盆地的沉积沉降中心主要位于柴北缘中段的大柴旦—怀头他拉一带,而晚侏罗世盆地的沉积沉降中心主要位于德令哈—乌兰一带。  相似文献   

13.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

14.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   

15.
Systematic K–Ar dating and geochemical analyses of Paleogene cauldrons in the Sanin Belt of SW Japan have been made to explore the relationship between the timing of their formation and the Paleogene subduction history of SW Japan documented in the Shimanto accretionary complex. We also examine the magma sources and tectonics beneath the backarc region of SW Japan at the eastern plate boundary of Eurasia.Fifty-eight new K–Ar ages and 19 previously reported radiometric age data show that the cauldrons formed during Middle Eocene to Early Oligocene time (43–30 Ma), following a period of magmatic hiatus from 52 to 43 Ma. The hiatus coincides with absence of an accretionary prism in the Shimanto Belt. Resumption of the magmatism that formed the cauldron cluster in the backarc was concurrent with voluminous influx of terrigenous detritus to the trench, as a common tectono-thermal event within a subduction system.The cauldrons are composed of medium-K calc-alkaline basalts to rhyolites and their plutonic equivalents. These rocks are characterized by lower concentrations of large ion lithophile elements (LILE) including K2O, Ba, Rb, Th, U and Li, lower (La/Yb)n ratios, lower initial Sr isotopic ratios (0.7037–0.7052) and higher εNd(T) values (?0.5 to +3.5) relative to Late Cretaceous to Early Paleogene equivalents. There are clear trends from enriched to depleted signatures with decreasing age, from the Late Cretaceous to the Paleogene. The same isotopic shift is also confirmed in lower crust-derived xenoliths, and is interpreted as mobilization of pre-existing enriched lithospheric mantle by upwelling depleted asthenosphere.Relatively elevated geothermal gradients are presumed to have prevailed over wide areas of the backarc and forearc of the SW Japan arc-trench system during the Eocene to Oligocene. Newly identified Late Eocene low silica adakites and high-Mg andesites in the Sanin Belt and Early Eocene A-type granites in the SW Korea Peninsula probably formed due to upwelling of hot asthenosphere and subduction of a young plate.The backarc region was an extensional tectonic setting, and some Paleogene rift basins and Sanin Belt cauldrons occur in linear arrays. The Eocene–Oligocene Sanin-SE Korea continental arc lies on the NE extension of the East China Sea Basin, the initial stage of which probably formed by continental arc rifting. This rifting may have been triggered by upwelling of hot asthenosphere into the wedge space created by rollback of the subducted slab, in response to decreased convergence rate between the Pacific and Eurasian plates.  相似文献   

16.
A plate-tectonics model of the Alpine evolution of the Caucasus is suggested. According to the model, in the Jurassic-Neocomian the Caucasian territory comprised the shelf of the East European platform, the marginal sea of the Great Caucasus, the Pontian-Transcaucasian island arc, the Anatolian-Minor Caucasian oceanic basin (Tethys) and the Iranian-Turkish microcontinent. Along the northern margin of the oceanic basin a convergent plate juncture extended. Part of the Caucasus, situated north of this plate boundary, represented the West Pacific-type active margin of the East European platform. In the Middle Cretaceous the Iranian-Turkish microcontinent collided with the Pontian-Transcaucasian island arc and as a result the Transcaucasian-Minor Asian continental block originated. In the central part of the latter an extensive Paleogene andesitic belt formed, with the Black Sea-Adjara-Trialetian and Talysh-South Caspian basaltic rift troughs on its rear (northern) side (incipient Black Sea and South Caspian basins). Major plate boundary shifted south, into the Zagros-Taurus basin, though the Anatolian-Minor Caucasian suture zone remained mobile in the Upper Cretaceous and Paleogene. From the Oligocene, under conditions of ongoing convergence of the Eurasian and Afro-Arabian continental blocks, the present-day intracontinental mountainous foldbelt has developed.  相似文献   

17.
Jurassic extensional basins developed along the northwestern margin of South America during the break-up of Pangea. Presently, these basins are dispersed in several tectonic blocks of the northern Andes and Mexico, hindering reconstruction of western equatorial Pangea before break-up. This is the case of the Cosinas Basin (Guajira block) and the Machiques Basin (Perijá Range), in northern Colombia, which are filled by Jurassic sedimentary and volcano-sedimentary successions. Autochthonous and para-autochthonous hypotheses on the origin of this basins have been proposed. The purpose of this research is to document the sedimentological evolution, depositional age (Sr-isotope + U-Pb geochronology), sediment provenance and paleogeography of the Cosinas and Machiques basins in order to constrain whether these basins formed within a single extensional margin or they formed as extensional basins in different tectonic blocks. Volcanic detrital zircon U-Pb ages documented in La Quinta Formation in the Machiques Basin and at the base of Rancho Grande Formation in the Cosinas Basin suggest that extensional basins were active in Early Jurassic time. However, a significant difference exists in their subsequent history. Whereas in the Machiques Basin dominates the accumulation of Lower and Middle Jurassic volcanoclastic deposits with abrupt lateral thickness changes, accumulation in the Cosinas Basin is dominantly of siliciclastic strata, with the record of two major marine incursions in Late Jurassic time. Integration of provenance results indicates that the Santander Massif supplied sediments to the Machiques Basin. In contrast, Middle to Upper Jurassic sandstones of the Cosinas Basin document unroofing of basement blocks that include metamorphic, sedimentary and plutonic rocks from the Guajira and Maya blocks. The similarity in age and composition of pre-Jurassic rocks in northwestern South America and the so-called peri-Gondwana blocks in the Mexican subcontinent (i.e., Maya and Oaxaquia blocks) challenge the use of detrital zircon population as an indicator of the autochthonous or para-autochthonous origin of the Guajira block. Large uncertainty of paleomagnetic results, and the lack of constraints for the time magnetization acquisition preclude estimating paleolatitudes for the Guajira block in Jurassic time but support previous interpretation of ca. 70°-90° clockwise rotation of the Guajira block relative to stable South America craton.Our preferred paleogeography considers that the Cosinas and Machiques basins were close to each other along the western continental margin of Pangea during the onset of extension in Early Jurassic time. The change from continental to marine depositional environments in Middle to Late Jurassic time along the Cosinas Basin, which have not been identified in the Machiques Basin or other autochthonous Jurassic basins in northwestern South America, allow us to propose that these blocks were separated during the Callovian - Tithonian interval, with the Cosinas Basin remaining closer to a conjugate Mexican margin, that we interpret as the Maya block. Collision of the Guajira block with the South American margin occurred near the Jurassic-Cretaceous boundary, as documented by deformation of Jurassic units previous to deposition of Berriasian strata in the Guajira block.  相似文献   

18.
墨西哥西马德雷山脉是白垩纪—新生代岩浆活动和构造运动形成的。中新生代岩浆活动可以分为5个主要阶段:侏罗纪—早白垩世、晚白垩世—古新世、始新世—渐新世、中新世早期和中新世中期—现代。这些岩浆活动和构造运动与法拉隆(Farallon)板块向北美大陆俯冲和加利福尼亚湾打开相关。墨西哥中新生代的成矿作用与东太平洋板块边缘连续的俯冲过程密切相关,矿床类型多样,包括VMS(与火山相关的块状硫化物)型、斑岩型、IOCG(铁氧化物铜金)型、矽卡岩型等。  相似文献   

19.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

20.
目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号