首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

2.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

3.
The three-dimensional shear velocity lithospheric structure at depths from 0 to 70 km beneath the southern Baikal rift system and its surroundings has been imaged by inversion of P-to-SV receiver functions from 46 digital stations operated in two teleseismic international projects in southern Siberia and Mongolia. The receiver functions were determined from teleseismic P waveforms and inverted to obtain depth dependences of S velocities at each station which were related to tectonic structures. The computed vertical and horizontal sections of the 3D shear velocity model imaged a transition from relatively thin crust of the southern Siberian craton to thicker crust in the folded area south and southeast of Lake Baikal, with a local zone of thin crust right underneath the South Baikal basin. The velocity structure beneath the Baikal rift, the mountains of Transbaikalia, Mongolia, and the southern craton margin includes several low-velocity zones at different depths in the crust. Some of these zones may record seismic anisotropy associated with mylonite alignment along large thrusts.  相似文献   

4.
We studied the 3D velocity structure of the crust and uppermost mantle beneath the Baikal region using tomographic inversion of ∼25,000 P and S arrivals from more than 1200 events recorded by 86 stations of three local seismological networks. Simultaneous iterative inversion with a new source location algorithm yielded 3D images of P and S velocity anomalies in the crust and upper mantle, a 2D model of Moho depths, and corrections to source coordinates and origin times. The resolving power of the algorithm, its stability against variations in the starting model, and the reliability of the final results were checked in several tests. The 3D velocity structure shows a well-pronounced low-velocity zone in the crust and uppermost mantle beneath the southwestern flank of the Baikal rift which matches the area of Cenozoic volcanism and a high velocity zone beneath the Siberian craton. The Moho depth pattern fits the surface tectonic elements with thinner crust along Lake Baikal and under the Busiyngol and Tunka basins and thicker crust beneath the East Sayan and Transbaikalian mountains and under the Primorsky ridge on the southern craton border.  相似文献   

5.
The upper-mantle structure was studied from first-arrival data along the Meteorite profile, run using underground nuclear explosions. Unlike the layered, slightly inhomogeneous models in the previous works, emphasis was laid on lateral inhomogeneity at the minimum possible number of abrupt seismic boundaries. We used forward ray tracing of the traveltimes of refracted and overcritical reflected waves. The model obtained is characterized by considerable velocity variations, from 7.7 km/s in the Baikal Rift Zone to 8.0–8.45 km/s beneath the Tunguska syneclise. A layer of increased velocity (up to 8.5–8.6 km/s), 30–80 km thick, is distinguished at the base of seismic lithosphere. The depth of the layer top varies from 120 km in the northern Siberian craton to 210 km in its southeastern framing. It has been shown that, with crustal density anomalies excluded, the reduced gravity field is consistent with the upper-mantle velocity model.  相似文献   

6.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

7.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

8.
We investigate the upper mantle velocity structure through processing first arrival data from peaceful nuclear explosions. The reported 2D model has been obtained by ray tracing for a spherical Earth, unlike the classical plane-approximation approach with subsequent spherical symmetry corrections, which is not always applicable to a laterally heterogeneous subsurface. The upper mantle velocity highs and lows imaged to 200–220 km depths show obvious correlation with major structures of the craton basement. Namely, low-velocity zones are observed beneath basins, the largest (to 8.0–8.1 km/s) under the Vendian–Early Cambrian Sayan–Yenisei syneclise. A discontinuous high-velocity layer (8.6–8.7 km/s) at depths between 150 and 240 km is underlain by a zone of lower velocity (8.50–8.55 km/s) down to the 410 km discontinuity, where the velocity at the top of the transition zone is 9.4–9.5 km/s.  相似文献   

9.
The origin of the Baikal rift zone (BRZ) has been debated between the advocates of passive and active rifting since the 1970s. A re-assessment of the relevant geological and geophysical data from Russian and international literature questions the concept of broad asthenospheric upwelling beneath the rift zone that has been the cornerstone of many “active rifting” models. Results of a large number of early and recent studies favour the role of far-field forces in the opening and development of the BRZ. This study emphasises the data obtained through studies of peridotite and pyroxenite xenoliths brought to the surface by alkali basaltic magmas in southern Siberia and central Mongolia. These xenoliths are direct samples of the upper mantle in the vicinity of the BRZ. Of particular importance are suites of garnet-bearing xenoliths that have been used to construct PT- composition lithospheric cross-sections in the region for the depth range of 35–80 km.Xenolith studies have shown fundamental differences in the composition and thermal regime between the lithospheric mantle beneath the ancient Siberian platform (sampled by kimberlites) and beneath younger mobile belts south of the platform. The uppermost mantle in southern Siberia and central Mongolia is much hotter at similar levels than the mantle in the Siberian craton and also has significantly higher contents of ‘basaltic’ major elements (Ca, Al, Na) and iron, higher Fe/Si and Fe/Mg. The combination of the moderately high geothermal gradient and the fertile compositions in the off-cratonic mantle appears to be a determining factor controlling differences in sub-Moho seismic velocities relative to the Siberian craton. Chemical and isotopic compositions of the off-cratonic xenoliths indicate small-scale and regional mantle heterogeneities attributed to various partial melting and enrichment events, consistent with long-term evolution in the lithospheric mantle. Age estimates of mantle events based on Os–Sr–Nd isotopic data can be correlated with major regional stages of crustal formation and may indicate long-term crust–mantle coupling. The ratios of 143/144Nd in many LREE-depleted xenoliths are higher than those in MORB or OIB source regions and are not consistent with a recent origin from asthenospheric mantle.Mantle xenoliths nearest to the rift basins (30–50 km south of southern Lake Baikal) show no unequivocal evidence for strong heating, unusual stress and deformation, solid state flow, magmatic activity or partial melting that could be indicative of an asthenospheric intrusion right below the Moho. Comparisons between xenoliths from older and younger volcanic rocks east of Lake Baikal, together with observations on phase transformations and mineral zoning in individual xenoliths, have indicated recent heating in portions of the lithospheric mantle that may be related to localised magmatic activity or small-scale ascent of deep mantle material. Overall, the petrographic, PT, chemical and isotopic constraints from mantle xenoliths appear to be consistent with recent geophysical studies, which found no evidence for a large-scale asthenospheric upwarp beneath the rift, and lend support to passive rifting mechanism for the BRZ.  相似文献   

10.
Events induced by deep gold-mining activity on the edge of the Witwatersrand basin dominate the seismicity of South Africa. The deployment of 54 broad-band seismic stations at 84 separate locations across southern Africa between April 1997 and April 1999 (Kaapvaal network) enabled the seismicity of South Africa to be better defined over a 2-year period. Seismic events located by the South African national network, and by localized seismic networks deployed in mines or across gold-mining areas, were used to evaluate earthquake location procedures and to show that the Kaapvaal network locates mining-induced tremors with an average error of 1.56±0.10 km compared with 9.50±0.36 km for the South African network. Travel times of seismic events from the mines recorded at the Kaapvaal network indicate regional variations in the thickness of the crust but no clearly resolved variations in seismic wavespeeds in the uppermost mantle. Greater average crustal thicknesses (48–50 km compared with 41–43 km) are observed in the northern parts of the Kaapvaal craton that were affected by the Bushveld magmatism at 2.05 Ga. Estimates of average crustal thickness for the southern part of the Kaapvaal craton from receiver functions (38 km) agree well with those from refracted arrivals from mining-induced earthquakes if the crustal thicknesses below the sources are assumed to be 40–43 km. In contrast, the average crustal thickness inferred from refracted arrivals for the northern part of the Kaapvaal craton is larger by about 7 km (51 km) than that inferred from receiver functions (44 km), suggesting a thick mafic lower crust of variable seismic properties due to variations in composition and metamorphic grade. Pn wavespeeds are high (8.3–8.4 km/s), indicating the presence of highly depleted magnesium-rich peridotite throughout the uppermost mantle of the craton. Seismic Pg and Sg phases indicate that the upper crust around the Witwatersrand basin is comparatively uniform in composition when averaged over several kilometres.  相似文献   

11.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


12.
Several long-range seismic profiles were carried out in Russia with Peaceful Nuclear Explosions (PNE). The data from 25 PNEs recorded along these profiles were used to compile a 3-D upper mantle velocity model for the central part of the Northern Eurasia. 2-D crust and upper mantle models were also constructed for all profiles using a common methodology for wavefield interpretation. Five basic boundaries were traced over the study area: N1 boundary (velocity level, V = 8.35 km/s; depth interval, D = 60–130 km), N2 (V = 8.4 km/s; D = 100–140 km), L (V = 8.5 km/s; D = 180–240 km) and H (V = 8.6 km/s; D = 300–330 km) and structural maps were compiled for each boundary. Together these boundaries describe a 3-D upper mantle model for northern Eurasia. A map characterised the velocity distribution in the uppermost mantle down to a depth of 60 km is also presented. Mostly horizontal inhomogeneity is observed in the uppermost mantle, and the velocities range from the average 8.0–8.1 km/s to 8.3–8.4 km/s in some blocks of the Siberian Craton. At a depth of 100–200 km, the local high velocity blocks disappear and only three large anomalies are observed: lower velocities in West Siberia and higher velocities in the East-European platform and in the central part of the Siberian Craton. In contrast, the depths to the H boundary are greater beneath the craton and lower beneath in the West Siberian Platform. A correlation between tectonics, geophysical fields and crustal structure is observed. In general, the old and cold cratons have higher velocities in the mantle than the young platforms with higher heat flows.Structural peculiarities of the upper mantle are difficult to describe in form of classical lithosphere–asthenosphere system. The asthenosphere cannot be traced from the seismic data; in contrary the lithosphere is suggested to be rheologically stratified. All the lithospheric boundaries are not simple discontinuities, they are heterogeneous (thin layering) zones which generate multiphase reflections. Many of them may be a result of fluids concentrated at some critical PT conditions which produce rheologically weak zones. The most visible rheological variations are observed at depths of around 100 and 250 km.  相似文献   

13.
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea.Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust.A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives.The Mohorovičić discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth.The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea.  相似文献   

14.
We present new results on the structure resulting from Palaeoproterozoic terrane accretion and later formation of one of the aulacogens in the East European Platform. Seismic data has been acquired along the 530-km-long, N–S-striking EUROBRIDGE'97 traverse across Sarmatia, a major crustal segment of the East European Craton. The profile extends across the Ukrainian Shield from the Devonian Pripyat Trough, across the Palaeoproterozoic Volyn Block and the Korosten Pluton, into the Archaean Podolian Block. Seismic waves from chemical explosions at 18 shot points at approximately 30-km intervals were recorded in two deployments by 120 mobile three-component seismographs at 3–4 km nominal station spacing. The data has been interpreted by use of two-dimensional tomographic travel time inversion and ray trace modelling. The high data quality allows modelling of the P- and S-wave velocity structure along the profile. There are pronounced differences in seismic velocity structure of the crust and uppermost mantle between the three main tectonic provinces traversed by the profile: (i) the Pripyat Trough is a ca. 4-km-deep sedimentary basin, fully located in the Osnitsk–Mikashevichi Igneous Belt in the northern part of the profile. The velocity structure is typical for a Precambrian craton, but is underlain by a ca. 5-km-thick lowest crustal layer of high velocity. The development of the Pripyat Trough appears to have only affected the upper crust without noticeable thinning of the whole crust; this may be explained by a rheologically strong lithosphere at the time of formation of the trough. (ii) Very high seismic velocity and Vp/Vs ratio characterise the Volyn Block and Korosten Pluton to a depth of 15 km and probably also the lowest crust. The values are consistent with an intrusive body of mafic composition in the upper crust that formed from bimodal melts derived from the mantle and the lower crust. (iii) The Podolian Block is close to a typical cratonic velocity structure, although it is characterised by relatively low seismic velocity and Vp/Vs ratio. A pronounced SW-dipping mantle reflector from Moho to at least 70 km depth may represent the Proterozoic suture between Sarmatia and Volgo–Uralia, the structure from terrane accretion, or a later shear zone in the upper mantle. The sub-Moho P-wave seismic velocity is high everywhere along the profile, with the exception of the area above the dipping reflector. This velocity change further supports a plate tectonic origin of the dipping mantle reflector. The profile demonstrates that structure from Palaeoproterozoic plate tectonic processes are still identifiable in the lithosphere, even where younger metamorphic equilibration of the crust has taken place.  相似文献   

15.
Abyssal variations beneath the Baikal rift zone are revealed in an irregular seismic stratification of the crust, the presence of an intracrust waveguide and by the vast (> 200,000 km2) underlying area of anomalously low velocity (Pn = 7.6−7.8 km/sec) uppermost mantle. In its abyssal structure the Baikal rift is heterogeneous along the strike, with sharp changes in crustal thickness (35–50 km).Comparison of first-arrival seismic-velocity curves and also the respective velocity columns reveals the essential similarity of upper-mantle seismic cross-sections for all continental rift zones. The anomalous upper layer of the mantle (ca. 7.7 km/sec) is relatively thin (15-13 km) and can be linked with the mantle waveguide only locally.  相似文献   

16.
The deep crustal structure of eastern Dharwar craton has been investigated through τ-p extremal inversion of P-wave travel times from a network of seismographs recording quarry blasts. Travel times have been observed in the distance range 30–250 km in a laterally homogeneous lithospheric segment Main features of the inferred velocity-depth relationship include: (a) 29 km thick combined upper and middle crust velocity varying from 6 km/s to 7 km/s, with no observable velocity discontinuity in this depth range; (b) a lower crust (∼ 29–41 km) with velocity increasing from 7.0 to 7.3 km/s; (c) an average upper mantle velocity of 8.1 km/s; and (d) presence of a 12 km thick high velocity crustal layer (7.4 – 7.8 km/s) in the depth range 41–53 km, with a distinct velocity gradient marking a velocity increase of 0.4 km/s. The anomalous 53 km thick crust is viewed as a consequence of magmatic underplating at the base of the crust in the process of cratonization of the eastern Dharwar craton during late Archaean. The underplated material reflects here with the velocity of 7–3 to 7–8 km/s below the depth of 40 km. Our proposition of magmatic underplating is also supported by the presence of large scale I-granitoid, a product of partial melting of the upper mantle material.  相似文献   

17.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

18.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

19.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

20.
为了理解长江中下游地区在中生代成矿的深部动力学过程,Sinoprobe-03-02项目于2011年9月至10月,在跨宁芜矿集区和郯庐断裂带实施了从安徽利辛至江苏宜兴450km长的宽角反射/折射地震剖面。速度剖面结果显示,Moho面深度和地壳速度结构在郯庐断裂两侧东西方向存在明显的差异:(1)在东部扬子块体内部,地壳覆盖层厚3~5km,西部的合肥盆地下方,则达到4~7km。(2)剖面平均Moho面深度为30~32km左右,在郯庐断裂下方,Moho面深度在35km左右;在宁芜矿集区下方,Moho面整体深度偏浅,达30~31km左右,但局部范围内,Moho面深度至34km左右。(3)剖面的下地壳平均速度在6.5~6.6km/s左右,在宁芜矿集区下方,下地壳速度偏低,为6.4~6.5km/s左右。剖面上地幔顶部的速度结构平均在8.0~8.2km/s。在宁芜矿集区下方,速度偏低,为7.9~8.1km/s左右。(4)郯庐断裂带的下方,从地表开始,还存在20多千米长的低速异常带,一直延伸到Moho面附近。剖面的宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等壳幔结构特征,预示下地壳不以榴辉岩残体为主,支持燕山期地幔岩浆的上涌和侵入并成矿,是热上涌物质的源地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号