首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
贺电  李江海  刘守偈 《岩石学报》2009,25(3):659-666
火山岩油气藏已成为我国东部中、新生代陆内裂谷盆地内一种重要的油气藏类型。松辽盆地北部徐家围子断陷营城组火山岩中形成大规模气藏,不同火山岩相对油气的储集性差异很大,因此探究断陷内火山机构类型和喷发模式成为天然气勘探开发的基础。徐家围子断陷发育中酸性火山岩,识别出层状火山、熔岩穹隆、破火山口等3种主要火山机构赋存类型。受区域垂向和斜向两期拉张作用控制,在断裂上盘、下盘和断裂带,火山机构分别以不同形式展布:断裂下盘的掀斜肩部火山机构发育、断裂带火山机构串珠状叠置、断裂上盘火山爆发强烈并形成大型徐东破火山口。徐东破火山口的形成说明岩浆侵位于地壳底部,形成扁平状的岩浆房。岩浆垂直上升喷发或沿断裂喷发,形成徐家围子断陷中心式-裂隙式火山喷发模式。  相似文献   

2.
The accretion of oceanic crust under conditions of oblique spreading is considered. It is shown that deviation of the normal to the strike of mid-ocean ridge from the extension direction results in the formation of echeloned basins and ranges in the rift valley, which are separated by normal and strike-slip faults oriented at an angle to the axis of the mid-ocean ridge. The orientation of spreading ranges is determined by initial breakup and divergence of plates, whereas the within-rift structural elements are local and shallow-seated; they are formed only in the tectonically mobile rift zone. As a rule, the mid-ocean ridges with oblique spreading are not displaced along transform fracture zones, and stresses are relaxed in accommodation zones without rupture of continuity of within-rift structural elements. The structural elements related to oblique spreading can be formed in both rift and megafault zones. At the initial breakup and divergence of continental or oceanic plates with increased crust thickness, the appearance of an extension component along with shear in megafault zones gives rise to the formation of embryonic accretionary structural elements. As opening and extension increase, oblique spreading zones are formed. Various destructive and accretionary structural elements (nearly parallel extension troughs; basin and range systems oriented obliquely relative to the strike of the fault zone and the extension axis; rhomb-shaped extension basins, etc.) can coexist in different segments of the fault zone and replace one another over time. The Andrew Bain Megafault Zone in the South Atlantic started to develop as a strike-slip fault zone that separated the African and Antarctic plates. Under extension in the oceanic domain, this zone was transformed into a system of strike-slip faults divided by accretionary structures. It is suggested that the De Geer Megafault Zone in the North Atlantic, which separated Greenland and Eurasia at the initial stage of extension that followed strike-slip offset, evolved in the same way.  相似文献   

3.
A Seabeam-based reconnaissance of the 500 km of the East Pacific Rise crest between 7°N and 2°40′N shows that the axial ridge is segmented by four 4–13 km non-transform offsets into an en echelon string of distinctively different linear volcanoes. These axial volcanoes are oriented orthogonal to relative plate motion, except where their overlapping ends veer 15° toward each other and where small intra-volcano offsets of their crestal rift zones create abrupt kinks. Longitudinal gradients of the crestlines are less than 5 m/km, except where they plunge at rift-zones' overlapped ends and where they rise locally to small axial peaks. Transverse profiles vary from trapezoidal to triangular, with a steep shield-shaped cross-section being most common. Conventional sounding data indicate that this pattern continues to the 140 km-offset Siqueiros transform fault system at 8.2°N. Within this fault system is a short spreadingcenter volcano contained in a rift valley that links two strike-slip fault zones. Immediately to the north is the shallow 9.0°–8.3°N axial volcano, with unusual relief mapped by a deeply towed instrument package. At the southern end of the plate boundary, as the rise crest enters the region of the Pacific-Cocos-Nazca triple junction, the axial ridge narrows, deepens, and acquires a more irregular long profile. South of 2°30′N the rise crest has a 15 km-wide rift valley that contains multiple volcanic ridges with north-south strikes. Structural hypotheses suggested or supported by these morphologic observations include a point-source magma supply to the spreading center from mantle diapirs, the along-strike continuity of axial magma chambers on fast-spreading rises, even across small rift-zone offsets, and the importance of magma intrusion as well as eruption for building the axial ridge. Hypotheses inconsistent with the new data include magma supply and long-distance dispersal from a few widely spaced plumes, primary control of the topographic, volcanic, and tectonic characteristics of the rise crest by distance from transform faults, and localization of triple junctions over major mantle upwellings.  相似文献   

4.
The walls of the Knipovich Ridge are complicated by normal and reverse faults revealed by a high-frequency profilograph. The map of their spatial distribution shows that the faults are grouped into domains a few tens of kilometers in size and are a result of superposition of several inequivalent geodynamic factors: the shear zone oriented parallel to the Hornsunn Fault and superposed on the typical dynamics of the midocean ridge with offsets along transform fracture zones and rifting along short segments of the Mid-Atlantic Ridge (MAR). According to the anomalous magnetic field, the Knipovich Ridge as a segment of the MAR has formed since the Oligocene including several segments with normal direction of spreading separated by a multitransform system of fracture zones. In the Quaternary, the boundary of plate interaction along the tension crack has been straightened to form the contemporary Knipovich Ridge, which crosses the previously existing magmatic spreading substrate and sedimentary cover at an angle of about 45° relative to the direction of accretion. The sedimentary cover along the walls of the Knipovich is Paleogene in age and has subsided into the rift valley to a depth of 500–1000 m along the normal faults.  相似文献   

5.
The results of experimental modeling and features of structure formation in the zones of nontrans-form offsets (NTOs) of spreading axes are presented. The experiments were performed on materials that are colloidal systems based on liquid and solid hydrocarbons, taking into account the similarity of conditions. The following parameters were changed during the experiments: (1) the thickness of the model lithosphere of the rift zone, (2) the thickness of the lithosphere in the zone of nontransform offsets between the rift segments; (3) the spreading velocity. The critical values of offsets for the spreading axes at which a character of structure formation in the zones of NTOs is changed were established.  相似文献   

6.
The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.  相似文献   

7.
Giacomo Corti   《Tectonophysics》2004,384(1-4):191-208
Centrifuge analogue experiments are used to model the reactivation of pre-existing crustal fabrics during extension. The models reproduced a weakness zone in the lower crust whose geometry was varied in order to investigate its role in controlling the architecture of rift segments and related transfer zones. The typical rift system geometry was characterised by two offset rift segments connected by a major transfer zone in which boundary faults were oblique to the extension vector and displayed a significant transcurrent component of movement. The transfer zone was also characterised by cross-basin faults with both trend and strike-slip component of movement opposite to that displayed by the master faults. Typically, different structural patterns were obtained by changing the offset angle φ between the rift segments, supporting that the structural pattern at transfer zones is strongly influenced by the orientation of pre-existing discontinuities with respect to the stretching vector. In the models, the aspect ratio (ratio of length vs. width) of the transfer zone shows a positive correlation with the offset angle (i.e., the more the inherited fabric is parallel to the extension direction, the longer and narrower the transfer zones). In case of staircase offset of the rift segments (φ=90°), the structural pattern was characterised by two isolated rift depressions linked by a narrow transfer zone in which border faults with alternating polarity overlapped. Prominent rise of the ductile lower crust was also observed at the transfer zone. Many of these geometrical features display striking similarities with natural rift systems. The results of the current experiments provide useful insights into the mechanics of continental rift architecture, supporting that rift propagation, width and along-axis segmentation may be strongly controlled by the reactivation of pre-existing pervasive crustal fabrics.  相似文献   

8.
Structural transfer zones in a half-graben rift basin play a significant role in controlling sandy sediments and providing a target for hydrocarbon exploration. Previous studies have classified the transfer zone in lacustrine environments into two different patterns: synthetic approaching transfer zones and synthetic overlapping transfer zones. However, the evolution of the depositional pattern and the controlling factors of the above transfer zones are still unclear. In the Fushan Sag, the northern South China Sea, an overlapping transfer zone developed in the early Eocene Epoch, while a synthetic approaching transfer zone developed in the late Eocene, due to tectonic uplift. This evolutionary process provided an opportunity to study the stacking pattern of strata architectural variability and facies distribution in the structural transfer zone of the Eocene lacustrine basin. In this study, following the indications of the oriented sedimentary structures in core samples and heavy mineral assemblages of 18 wells, the evolution of the paleo-hydrodynamic distribution during the early and late Eocene has been reconstructed. The sequence-stratigraphy was then divided and the sand body parameters calculated, according to the seismic data and well log interpretations. During the early Eocene, the lake level was at a low stand, the faults broken displacement in the East block being over 50?m. The prograding delta and turbidites are oriented perpendicular to the structural transfer zone. According to the quantitative analysis of the flow rate and the depositional parameters, we speculate that gravity transportation of the sediment and the sediment-supply are the dominating factors during this period. Up to the late Eocene, the rising lake level and the decreased fault displacement leads the flow to divert to a NE-direction, resulting in it being parallel to the axis of the transfer zone. Thus, we speculate that the accommodation space is predominant in this period. In comparison with the above two periods, a braided river delta with an isolated sand body and turbidites developing in the deep area is prominent in the overlapping transfer zone, while a meandering river delta is characteristic of the synthetic approaching transfer zone.  相似文献   

9.
The modern methods of physical modeling of structure-forming deformations in extension zones of oceanic lithosphere are discussed; the methods differ in their experimental equipment, model material, and experimental techniques. The simulation performed with an elastic-ductile model has demonstrated that extension of a brittle lithospheric layer results in disruption of its continuity and in formation of a rift valley according to the mechanism of running fracture propagation. The modeling results provide insights into qualitative pattern of faulting and fracturing within a rift zone, specific features of rift segmentation, and development of various structural elements (axis bends, echelons of fractures, nontransform offsets, small and large overlaps, etc.) under various geodynamic conditions of spreading. The modeling has shown that origination and evolution of structures of various types depend on the lithosphere’s thickness beneath the rift axis; the width of the lithosphere’s heating zone; the spreading orientation; and, to a lesser degree, on the spreading rate. A relatively rectilinear rift broken into particular segments bounded by small-amplitude offsets with or without minor overlaps arises in the case of both a small width of the heating zone, closely related to the axial magma chamber, and a small thickness of the lithosphere (fast-spreading conditions). In the case of a wide heating zone caused by ascent of an asthenospheric wedge or a mantle plume, offsets of rift are more pronounced and deformations embrace a wider region. If, as a result, the thickness of the lithosphere increases, the rift will be less linear and the structural heterogeneity will become more contrasting. In addition to the thickness of the lithosphere, the angle between the rift zone and the extension axis also controls the rift configuration: the greater the angle, the more conspicuous the en echelon arrangement of fractures. For any spreading type, the propagating front of linear microfractures that disrupt the upper brittle layer of the lithosphere predates the origin of mesoscopic fractures and predetermines a general trend of the rift zone. This indicates that the fractures of various sizes propagate simultaneously.  相似文献   

10.
安徽省重力异常特征分区与地质构造单元划分   总被引:3,自引:0,他引:3  
本文从安徽省区域重力异常入手,依据大地构造分区的地质矿产要素进行对应分析,建立了不同级别大地构造分区的重磁异常标志及其边界特征,最后对各重力异常分区的地质解释进行了总体归纳。  相似文献   

11.
吴海波  李军辉  刘赫 《沉积学报》2013,31(2):358-367
呼和湖凹陷为“东断西超”的箕状断陷,断陷期广泛发育的构造坡折带对砂体及油气的富集起到重要的控制作用,对其研究将对该区的下步勘探具有重要意义。根据断裂发育特征及平面、剖面组合样式,在该凹陷识别出多种同沉积断裂组合样式,主要包括平行断阶状、帚状、叉状、断接型等断裂体系,造就湖盆复杂多变的构造古地貌及断裂坡折体系,严格控制着凹陷内砂体分散体系的沉积和堆积模式。按照所发育的断裂坡折带分布位置,分别阐述了断控陡坡型坡折带、缓坡断阶型坡折带、洼槽边缘型坡折带三种构造坡折带对沉积充填及沉积体系的控制作用。结合勘探实践探讨了同沉积断裂坡折带控制的砂体与油气藏富集的关系,指出洼槽边缘断裂坡折带是最为有利的勘探部位。  相似文献   

12.
The Dead Sea rift is considered to be a plate boundary of the transform type. Several key questions regarding its structure and evolution are: Does sea floor spreading activity propagate from the Red Sea into the Dead Sea rift? Did rifting activity start simultaneously along the entire length of the Dead Sea rift, or did it propagate from several centres? Why did the initial propagation of the Red Sea into the Gulf of Suez stop and an opening of the Gulf of Elat start?

Using crustal structure data from north Africa and the eastern Mediterranean and approximating the deformation of the lithosphere by a deformation of a multilayer thin sheet that overlies an inviscid half-space, the regional stress field in this region was calculated. Using this approach it is possible to take into account variations of lithospheric thickness and the transition from a continental to an oceanic crust. By application of a strain-dependent visco-elastic model of a solid with damage it is possible to describe the process of creation and evolution of narrow zones of strain rate localization, corresponding to the high value of the damage parameter i.e. fault zones.

Mathematical simulation of the plate motion and faulting process suggests that the Dead Sea rift was created as a result of a simultaneous propagation of two different transforms. One propagated from the Red Sea through the Gulf of Elat to the north. The other transform started at the collision zone in Turkey and propagated to the south.  相似文献   


13.
The Late Ordovician Solund-Stavfjord ophiolite in western Norway represents a remnant of the Iapetus oceanic lithosphere that developed in a Caledonian marginal basin. The ophiolite contains three structural domains that display distinctively different crustal architecture that reflects the mode and nature of magmatic and tectonic processes operated during the multi-stage seafloor spreading evolution of this marginal basin. Domain I includes, from top to bottom, an extensive extrusive sequence, a transition zone consisting of dike swarms with screens of pillow breccias, a sheeted dike complex, and plutonic rocks composed mainly of isotropic gabbro and microgabbro. Extrusive rocks include pillow lavas, pillow breccias, and massive sheet flows and are locally sheared and mineralized, containing epidosites, sulfide-sulfate deposits, Fe-oxides, and anhydrite veins, reminiscent of hydrothermal alteration zones on the seafloor along modern mid-ocean ridges. A fossil lava lake in the northern part of the ophiolite consists of a >65-m-thick volcanic sequence composed of a number of separate massive lava units interlayered with pillow lavas and pillow breccia horizons. The NE-trending sheeted dike complex contains multiple intrusions of metabasaltic dikes with one- and two-sided chilled margins and displays a network of both dike-parallel normal and dike-perpendicular oblique-slip faults of oceanic origin. The dike-gabbro boundary is mutually intrusive and represents the root zone of the sheeted dike complex. The internal architecture and rock types of Domain I are analogous to those of intermediate-spreading oceanic crust at modern mid-ocean ridge environments. The ophiolitic units in Domain II include mainly sheeted dikes and plutonic rocks with a general NW structural grain and are commonly faulted against each other, although primary intrusive relations between the sheeted dikes and the gabbros are locally well preserved. The exposures of this domain occur only in the northern and southern parts of the ophiolite complex and are separated by the ENE-trending Domain III, in which isotropic to pegmatitic gabbros and dike swarms are plastically deformed along ENE-striking sinistral shear zones. These shear zones, which locally include fault slivers of serpentinite intrusions, are crosscut by N20°E-striking undeformed basaltic dike swarms that contain xenoliths of gabbroic material. The NW-trending sheeted dike complex in the northern part of Domain II curves into an ENE orientation approaching Domain III in the south. The anomalous nature of deformed crust in Domain III is interpreted to have developed within an oceanic fracture zone or transform fault boundary.REE chemistry of representative extrusive and dike rocks from all three domains indicates N- to E-MORB affinities of their magmas with high Th/Ta ratios that are characteristic of subduction zone environments. The magmatic evolution of Domain I encompasses closed-system fractional crystallization of high-Mg basaltic magmas in small ephemeral chambers, which gradually interconnected to form large chambers in which mixing of primary magmas with more evolved and fractionated magma caused resetting of magma compositions through time. The compositional range from high-Mg basalts to ferrobasalts within Domain I is reminiscent of modern propagating rift basalts. We interpret the NE-trending Domain I as a remnant of an intermediate-spread rift system that propagated northeastwards (in present coordinate system) into a pre-existing oceanic crust, which was developed along the NW-trending doomed rift (Domain II) in the marginal basin. The N20°E dikes laterally intruding into the anomalous oceanic crust in Domain III represent the tip of the rift propagator. The inferred propagating rift tectonics of the Solund-Stavfjord ophiolite is similar to the evolutionary history of the modern Lau back-arc basin in the SW Pacific and suggests a complex magmatic evolution of the Caledonian marginal basin via multi-stage seafloor spreading tectonics.  相似文献   

14.
The tectonical setting in Iceland is quite complex due to the interaction of the Iceland hot spot and the Mid Atlantic Ridge. While in the north of the island one active spreading zone exists, the divergent motion in the centre and the south is distributed over at least two volcanic rift zones. The spreading rate increases linearly along the Western Volcanic Zone from north to south up to 8 mm/yr at the Hengill triple junction. On the contrary, the spreading rate of the parallel Eastern Volcanic Zone decreases from 16 mm/yr down to 6 mm/yr at the island's southern coast. The Hreppar microplate between the two predominant rift zones has an independent motion, which is distinct from that of the Eurasian and North American plates. A new detected feature is the spreading activity around the Hofsjökull volcanic zone located in the centre of Iceland with a significant rate of 6 mm/yr. During this investigation the coordinate sets of nearly 20 years of GPS data acquisition on Iceland were combined to get a velocity field for the surface of Iceland. This velocity field is based on a linear kinematic model with the consideration of local non-linear effects like volcano up-doming and displacements due to major earthquakes.  相似文献   

15.
The direction of convergence between the Rivera and North American plates becomes progressively more oblique (in a counter-clockwise sense as measured relative to the trench-normal direction) northwestward along the Jalisco subduction zone. By analogy to other subduction zones, the forces resulting from this distribution of convergence directions are expected to produce a NW moving, fore-arc sliver and a NW–SE stretching of the fore-arc area. Also, a series of roughly arc parallel strike-slip faults may form in the fore-arc area, both onshore and offshore, as is observed in the Aleutian arc.In the Jalisco subduction zone, the Jalisco block has been proposed to represent such a fore-arc sliver. However, this proposal has encountered one major problem. Namely, right-lateral strike-slip faulting within the fore-arc sliver, and between the fore-arc sliver and the North American plate, should be observed. However, evidence for the expected right-lateral strike-slip faulting is sparse. Some evidence for right-lateral strike-slip faulting along the Jalisco block–North American plate boundary (the Tepic–Zacoalco rift system) has been reported, although some disagreement exists. Right-lateral strike-slip faulting has also been reported within the interior of the Jalisco block and in the southern Colima rift, which forms the SE boundary of the Jalisco block.Threefold, multi-channel seismic reflection data were collected in the offshore area of the Jalisco subduction zone off Manzanillo in April 2002 during the FAMEX campaign of the N/O L'Atalante. These data provide additional evidence for recent strike-slip motion within the fore-arc region of the Jalisco subduction zone. This faulting offsets right-laterally a prominent horst block within the southern Colima rift, from which we conclude that the sense of motion along the faulting is dextral. These data also provide additional evidence for recent subsidence within the area offshore of Manzanillo, as has been proposed.  相似文献   

16.
Slickenside studies in regions of crustal spreading such as Iceland and the Afar Depression, East Africa, reveal that a significant number of faults parallel and close to rift axes are strike-slip rather than normal. Therefore, the pattern of brittle deformation in these regions does not conform to the classic two-dimensional schemes of oceanic tectonics and pre-oceanic rifting. Dip-slip and strike-slip faulting presumably alternated along or in the vicinity of spreading axes, indicate a varying stress field and a combination of transverse and longitudinal movements. In Iceland, strike-slip faults parallel to rifts are observed both west and east of the rift system as well as in a median area between overlapping rifts; the mechanisms proposed for their origin include accommodation of oblique convergence or divergence of crustal sections due to variations of spreading directions along axis and the interaction of overlapping rifts. In the Afar Depression this kind of fault is recorded west of the rift of Asal and can be imputed to reflect an interaction among rifts in the vicinity of the Afar triple junction. Rift-parallel strike-slip faults cannot however be assumed to be a feature of all crustal spreading axes due to the peculiarity of the examined regions: both of them are hot-spot areas and the Afar Depression lies at a triple junction.  相似文献   

17.
Calculation of the downward continuation for the anomalous magnetic field at the Knipovich Ridge showed more complicate segmentation of the spreading oceanic basement than was earlier considered. The structural pattern of the field is evidence that the area consists of no less than four segments separated by transform fracture zones with the azimuth of oceanic crust accretion about 310° and the normal position relative to the rift segments with the azimuth of 40°. The modern location of the axis of the Knipovich Ridge straightens the complicate divergent boundary between the plates in the strike-slip conditions between the spreading centers of the Mohns and Gakkel ridges. The axis is a detachment zone intersecting the oceanic basement having formed from the Late Oligocene. A new magnetoactive layer composed of magmatic products has not yet been formed in this structure.  相似文献   

18.
New data are obtained on the structure, evolution, and origin of zones of nontransform offsets of adjacent segments in the Mid-Atlantic Ridge (MAR), which, in contrast to transform fracture zones, so far are studied insufficiently. The effects of deep mantle plumes developing off the crest of the MAR on the processes occurring in the spreading zone are revealed. These results are obtained from the geological investigation of the crest of the MAR between 19.8 ° and 21° S, where bottom sampling, bathymetric survey, and magnetic measurements have been carried out previously. Two segments of the rift valley displaced by 10 km relative to each other along a nontransform offset are revealed. A volcanic center of a spreading cell, which has been active over the last 2 Ma, is located in the northern part of the southern segment and distinguished by a decreased depth of the rift valley and increased thickness of the crust. Magnesian, slightly evolved basalts of the N-MORB type are detected in this center, whereas evolved and high-Fe basalts are found beyond it. The variation in the composition of the basalts indicates that the volcanic center is related to the upwelling of the asthenospheric mantle, which spread along and across the spreading ridge. In the lithosphere, the melt migrated off the volcanic center along the rift valley. In the northern segment, a vigorous volcanic center arose 2.5 Ma ago near its southern end; at present, the volcanic activity has ceased. As a result of the volcanic activity, an oval rise composed of enriched T-MORB-type basalts was formed at the western flank of the crest zone. The isotopic signatures show that the primary melts are derivatives of the chemically heterogeneous mantle. The mixing of material of the depleted mantle with the mantle material pertaining either to the Saint Helena or the Tristan da Cunha plumes is suggested; the mixture of all three sources cannot be ruled out. The conclusion is drawn that the mantle material of the Saint Helena plume was supplied to the melting zone beneath the axial rift near the oval rise along a linear permeable zone in the mantle extending at an azimuth of 225° SW. The blocks of mantle material that got to the convecting mantle from the Tristan da Cunha plume at the stage of supercontinent breakup were involved in melting as well. The nontransform offset between the two segments arose on the place of a previously existing transform fracture zone about 5 Ma ago. The nontransform offset developed in the regime of oblique spreading at the progressive propagation of the southern segment to the north. The zone of nontransform offset is characterized by recent volcanic activity. Over the last 2 Ma, spreading of the studied MAR segment was asymmetric, faster in the western direction. The rates of westward and eastward half-spreading in the northern segment are estimated at 1.88 and 1.60 cm/yr, respectively.  相似文献   

19.
T. V. Gerya 《Petrology》2013,21(6):550-560
This work presents high-resolution 3D numerical model of transform fault initiation at rifted continental margins. Our petrological-thermomechanical visco-plastic model allows for spontaneous nucleation of oceanic spreading process in a continental rift zone and takes into account new oceanic crust growth driven by decompression melting of the asthenospheric mantle. Numerical model predicts that ridge-transform spreading pattern initiate in several subsequent stages: crustal rifting (0–1.5 Myr), spreading centers nucleation and propagation (1.5–3 Myr), proto-transform fault initiation and rotation (3–5 Myr) and mature ridge-transform spreading (> 5 Myr). Comparison of modeling results with the natural data from the Woodlark Basin suggests that the development of this region closely matches numerical predictions. Similarly to the model, the Moresby (proto-) Transform terminates in the oceanic rather than in the continental crust. This fault associates with a notable topographic depression and formed within 0.5–2 Myr while linking two offset overlapping spreading segments. Model reproduces well characteristic “rounded” contours of the spreading centers as well as the presence of a remnant of the broken continental crustal bridge observed in the Woodlark Basin. Proto-transform fault traces and truncated tip of one spreading center present in the model are also documented in nature. Numerical results are in good agreement with the concept of Taylor et al. (2009) which suggests that spreading segments nucleate en echelon in overlapping rift basins and that transform faults develop as or after spreading nucleates. Our experiments also allow to refine this concept in that (proto)-transform faults may also initiate as oblique rather than only spreading-parallel tectonic features. Subsequent rotation of these faults toward the extension-parallel direction is governed by space accommodation during continued oceanic crust growth within offset ridge-transform intersections.  相似文献   

20.
The most significant vertical movements of the oceanic crust in the Central Atlantic are characteristic of transverse ridges confined to transform fracture zones. These movements are also recorded in some local depressions of the Mid-Atlantic Ridge (MAR) and in older structures of deep-sea basins. The amplitude of such movements substantially exceeds that related to the cooling of lithospheric plates. Vertical movements can be driven by various factors: the thermal effect of a heated young MAR segment upon a cold plate, thermal stress, thermal energy released by friction in the course of displacement of fault walls relative to each other, serpentinization of the upper mantle rocks in the transform fault zone, and lateral compression and extension. The alternation of compression and extension that arises because of the nonparallel boundaries of the transform fracture zone and the unstable configuration of the rift/fracture zone junction was the main factor responsible for the formation of the transverse ridge in the Romanche Fracture Zone. The most probable cause of the vertical rise of the southern transverse ridge in the Vema Fracture Zone is the change in the spreading direction. In general, the fracture zones with active segments more than 100 km long are characterized by extension and compression oriented perpendicularly to the main displacement and related to slight changes in the spreading configuration. It is impossible to single out ambiguously the causes of vertical movements in particular structural features. In most cases, the vertical movements are controlled by several factors, while the main role belongs to the lateral compressive and tensile stresses that appear owing to changes in the movement of lithospheric blocks in the course of MAR spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号