首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Turbidite sandstones of the Miocene Marnoso‐arenacea Formation (northern Apennines, Italy) display centimetre to decimetre long, straight to gently curved, 0·5 to 2·0 cm regularly spaced lineations on depositional (stratification) planes. Sometimes these lineations are the planform expression of sheet structures seen as millimetre to centimetre long vertical ‘pillars’ in profile. Both occur in the middle and upper parts of medium‐grained and fine‐grained sandstone beds composed of crude to well‐defined stratified facies (including corrugated, hummocky‐like, convolute, dish‐structured and dune stratification) and are aligned sub‐parallel to palaeoflow direction as determined from sole marks often in the same beds. Outcrops lack a tectonic‐related fabric and therefore these structures may be confidently interpreted to be sedimentary in origin. Lineations resemble primary current lineations formed by the action of turbulence during bedload transport under upper stage plane bed conditions. However, they typically display a larger spacing and micro‐topography compared to classic primary current lineations and are not associated with planar‐parallel, finely laminated sandstones. This type of ‘enhanced lineation’ is interpreted to develop by the same process as primary current lineations, but under relatively high near‐bed sediment concentrations and suspended load fallout rates, as supported by laboratory experiments and host facies characteristics. Sheets are interpreted to be dewatering structures and their alignment to palaeoflow (only noted in several other outcrops previously) inferred to be a function of vertical water‐escape following the primary depositional grain fabric. For the Marnoso‐arenacea beds, sheet orientation may be linked genetically to the enhanced primary current lineation structures. Current‐aligned lineation and sheet structures can be used as palaeoflow indicators, although the directional significance of sheets needs to be independently confirmed. These indicators also aid the interpretation of dewatered sandstones, suggesting sedimentation under a traction‐dominated depositional flow – with a discrete interface between the aggrading deposit and the flow – as opposed to under higher concentration grain or hindered‐settling dominated regimes.  相似文献   

2.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

3.
The study of clast composition carried out on the alluvial gravels of the Romagna Apennines of northern Italy has provided evidence for an extensive covering of allochthonous units (Ligurian nappe and Epiligurian succession) above the Miocene foredeep deposits (Marnoso‐Arenacea Formation), which has been subsequently eroded during the Late Miocene–Pleistocene uplift. This result is confirmed by the burial history outlined in the Marnoso‐Arenacea Formation through vitrinite reflectance and apatite fission‐track analyses. The Romagna Apennines represent, therefore, a regional tectonic window where the thrust system that displaced the Marnoso‐Arenacea Formation crops out. The geometric relations between this thrust system and the basal thrust of the Ligurian nappe, exposed at the boundaries of the Romagna Apennines (Sillaro Zone and Val Marecchia klippe), are consistent with a duplex structure. Thus, the Romagna Apennines thrust system is an eroded duplex. The duplex roof‐thrust corresponds to the surface of the synsedimentary overthrust of the Ligurian nappe on the Marnoso‐Arenacea Formation; the floor‐thrust is located in the pelagic pre‐foredeep deposits (Schlier Formation). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The Marnoso–arenacea basin was a narrow, northwest–southeast trending, foredeep of Middle–Late Miocene age bounded to the southwest by the Apennine thrust front. The basin configuration and evolution were strongly controlled by tectonics.

Geometrical and sedimentological analysis of Serravallian turbidites deposited within the Marnoso–arenacea foredeep, combined with palaeocurrent data (turbidite flow provenance, reflection and deflection), identify topographic irregularities in a basin plain setting in the form of confined troughs (the more internal Mandrioli sub-basin and the external S. Sofia sub-basin) separated by an intrabasinal structural high. This basin configuration was generated by the propagation of a blind thrust striking northwest to southeast, parallel to the main trend of the Apennines thrust belt.

Ongoing thrust-induced sea bed deformation, marked by the emplacement of large submarine landslides, drove the evolution of the two sub-basins. In an early stage, the growth and lateral propagation of a fault-related anticline promoted the development of open foredeep sub-basins that were replaced progressively by wedge-top or piggy-back basins, partially or completely isolated from the main foredeep. Meanwhile, the depocenter shifted to a more external position and the sub-basins were incorporated within an accretionary thrust belt.  相似文献   


5.
刘辰生  郭建华  王宗秀 《地球科学》2019,44(11):3678-3691
雪峰山志留系前陆盆地分布在湘中-湘西北-四川盆地,是上扬子板块主要的盆地类型,目前针对该前陆盆地沉积特征和页岩气勘探潜力的研究少见.根据野外资料、测井资料和分析测试资料分析了湘西北和湘中地区前陆盆地沉积建造过程和页岩气勘探潜力.结果表明湘中前陆盆地前渊带以浊积扇和浅海陆棚相沉积为主,而湘西北隆后盆地沉积相类型丰富,包括潮坪相、浅海陆棚相、滨岸相、三角洲相和碳酸盐岩台地相等.虽然前渊带和隆后盆地沉积相类型和沉积厚度差异较大,但沉积旋回的划分却是一致的,因此前渊带和隆后盆地相互连通,雪峰山对其两侧盆地的遮挡作用有限.地球化学测试分析表明研究区隆后盆地页岩的有机碳含量、有机质类型均较四川盆地的焦石坝差.湖南地区志留系页岩各项地化指标较差的主要原因是其缺少龙马溪组第一旋回的黑色碳质页岩.   相似文献   

6.
冀西北尚义盆地对晚侏罗世构造活动的沉积响应   总被引:2,自引:1,他引:1       下载免费PDF全文
尚义盆地位于走向近东西的中生代燕山冲断带前缘盆地群的西段,在晚侏罗世土城子时期堆积了大量的粗碎屑。盆地中土城子组沉积相变明显,自北向南从粗砾质变为粉砂质沉积,具比较典型的非对称相带分布特征。土城子早一中期,从北向南总体上形成砾质冲积扇(包括泥石流)-辫状河流-洪泛平原或干化湖泊等古环境布局。晚期则以砂砾质辫状河流沉积为主,可能夹有发育大型风成交错层理的砂质沙丘沉积。土城子组碎屑成分以变质岩和花岗质岩石为主.物源主要来自盆地北侧的"内蒙地轴",沉积充填具有同构造砾岩的性质。尚义盆地北缘发育一系列呈叠瓦状排列的逆冲断裂。断裂与盆地耦合关系的初步分析显示.北缘逆冲断裂的构造载荷是控制尚义盆地形成和演化的主要因素。靠近北部冲断带一侧沉积相序的中—下部具有向上变粗的特点.可能指示了土城子组沉积受前进式的冲断载荷和岩石圈挠曲控制的过程。根据尚义盆地与其北侧相关断裂的空间配置、沉积碎屑北粗南细的变化、盆地横断面北厚南薄的楔状体特征等分析.盆地属于陆内的前陆式盆地,推测是在自北向南的近水平挤压构造背景下形成的.  相似文献   

7.
The Kaskapau Formation spans Late Cenomanian to Middle Turonian time and was deposited on a low‐gradient, shallow, storm‐dominated muddy ramp. Dense well log control, coupled with exposure on both proximal and distal margins of the basin allows mapping of sedimentary facies over about 35 000 km2. The studied portion of the Kaskapau Formation is a mudstone‐dominated wedge that thins from 700 m in the proximal foredeep to 50 m near the forebulge about 300 km distant. Regional flooding surfaces permit mapping of 28 allomembers, each of which represent an average of ca 125 kyr. More than 200 km from shore, calcareous silty claystone predominates, whereas 100 to 200 km offshore, mudstone and siltstone predominate. From about 30 to 100 km offshore, centimetre‐bedded very fine sandstone and mudstone record along‐shelf (SSE)‐directed storm‐generated geostrophic flows. Five to thirty kilometres from shore, decimetre‐bedded hummocky cross‐stratified fine sandstone and mudstone record strongly oscillatory, wave‐dominated flows whereas some gutter casts indicate shore‐oblique, apparently mostly unidirectional geostrophic flows. Nearshore facies are dominated by swaley cross‐stratified or intensely bioturbated clean fine sandstone, interpreted as recording, respectively, areas strongly and weakly affected by discharge from distributary mouths. Shoreface sandstones grade locally into river‐mouth conglomerates and sandstones, including conglomerate channel‐fills up to 15 m thick. Locally, brackish lagoonal shelly mudstones are present on the extreme western margin of the basin. There is no evidence for clinoform stratification, which indicates that the Kaskapau sea floor had extremely low relief, lacked a shelf‐slope break, and was probably nowhere more than a few tens of metres deep. The absence of clinoforms probably indicates a long‐term balance between rates of accommodation and sediment supply. Mud is interpreted to have been transported >250 km offshore in a sea‐bed nepheloid layer, repeatedly re‐suspended by storms. Fine‐grained sediment accumulated up to a ‘mud accommodation envelope’, perhaps only 20 to 40 m deep. Continuous re‐working of the sea floor by storms ensured that excess sediment was redistributed away from areas that had filled to the ‘accommodation envelope’, being deposited in areas of higher accommodation further down the transport path. The facies distributions and stratal geometry of the Kaskapau shelf strongly suggest that sedimentary facies, especially grain‐size, were related to distance from shore, not to water depth. As a result, the ‘100 to >300 m’ depth interpreted from calcareous claystone facies for the more central parts of the Interior Seaway, might be a significant overestimate.  相似文献   

8.
库车前陆盆地的白垩系由卡普沙良群(自下而上包括亚格列木组、舒善河组、巴西盖组)和巴什基奇克组组成.盆地北部克孜勒努尔沟的白垩系亚格列木组和巴什基奇克组底部均发育一大套泥石流沉积,表明白垩系卡普沙良群为一期构造活动幕的产物,为一个完整的二级层序,根据沉积演化特征可将其细分为7个三级层序.亚格列木组与舒善河组之间,扇三角洲平原相突变为滨浅湖相沉积,且舒善河组滨岸沙坝微相持续稳定发育,反映前陆盆地楔顶带的发育抑制了构造活动期源于造山带的粗碎屑的供给,使前渊带的沉积物供给速率趋于稳定.此外,克孜勒努尔沟卡普沙良群地层厚度远大于前缘隆起带,与上、下地层呈整合或平行不整合接触.研究表明,克孜勒努尔沟卡普沙良群为一套临近造山带的前渊带沉积.  相似文献   

9.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

10.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   

11.
承德地区土城子组沉积特征及其构造意义   总被引:6,自引:0,他引:6  
承德地区土城子组的沉积地层,主要保存在两个地区,一处为承德向斜,另一处为古北口断层的南部紧邻断层地区,即分别命名的承德盆地和古北口盆地内。根据其沉积特征,可分两个阶段。土城子组沉积早期阶段,盆地充填自下而上表现为冲积扇、砾质辫状河到曲流河的沉积过程。晚期阶段,承德盆地南部以及古北口盆地内近断层处,皆表现为冲积扇沉积,沉积物较早期地层有明显不同,碳酸盐岩颗粒占据主要成分,并沿剖面向上增加;承德盆地南半部分和古北口盆地内古流向分别为自南向北和自北向南。区域构造和土城子组沉积特征表明,在土城子组沉积晚期阶段,该地区构造环境发生了由伸展到挤压的转变,同时可能使盆地发生了正反转。  相似文献   

12.
The space/time evolution of the Umbria-Romagna-Marche domains of the northern Apennine Miocene foredeep is proposed. In this period, the turbidite siliciclastic sedimentation is represented mainly by the Miocene Marnoso-Arenacea Formation, which generally ends with mainly marly deposits. From the internal Apennine sectors (Umbria-Romagna domain) to the external Adriatic Margin (Marche domain) the siliciclastic succession overlies hemipelagic marly deposits (Schlier Formation). The whole depositional area can be considered as a single wide basin with depocenter or main sedimentation areas progressively migrating eastwards. This basin is characterized by some morphological highs which did not constitute real dams for the sedimentary flows (turbidity currents). Multiple feeding (arkose, litharenites, calcarenites) from different sources is related to palaeogeographical and palaeotectonic reorganization of the most internal, previously deformed, Apennine areas. The activation of the foredeep stage is marked by the beginning of the siliciclastic sedimentation (Late Burdigalian in the most internal sector). This sedimentation ends in the most external sector in the Early Messinian, pointing to a depositional cycle of about 9?C10?Ma. The diachronism of the base of the siliciclastic deposition proves to be almost 5?Ma. The syn-depositional compressional deformation, which shows a marked diachronism, affected the internal area of the foredeep in the Early-Middle Serravallian, and progressively migrated up to Late Miocene, involving more and more external sectors. The deformed siliciclastic sedimentary wedge constitutes an orogenic pile incorporated in the Apennine Chain, represented by different tectonic elements superimposed by means of NE-vergent thrusts. The main stratigraphic and tectonic events of the Toscana-Romagna-Marche Apennines are presented in a general framework, resulting also in a terminological revision.  相似文献   

13.
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9–1.0 Ga and ca. 420–440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484–383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310–254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298–269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298–246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.  相似文献   

14.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

15.
西藏措勤盆地下白垩统多巴组沉积环境分析   总被引:9,自引:3,他引:6  
王冠民 《沉积学报》2000,18(3):349-354
西藏措勤前陆盆地下白垩统多巴组是一套分布面积广大,比较特征的碳酸盐、陆源碎屑混合沉积的地层,本文通过对几条较完整的主干剖面的详细沉积相分析,揭示了多巴组的主要沉积环境包括潮坪、低能潮下带、近岸碳酸盐台地缓坡、台缘介壳滩及碳酸盐台地等几种主要类型,建立了多巴组的沉积相模式,并指出多巴组的沉积演化主要受控于盆地构造运动和全球海平面变化,这将有助于该地区的构造沉积演化研究。  相似文献   

16.
西秦岭徽县-成县早白垩世盆地沉积特征及其构造意义   总被引:1,自引:1,他引:0  
张英利  王宗起  闫臻 《地质通报》2012,31(7):1142-1154
徽县-成县(徽成)盆地是西秦岭造山带内一个具有代表性的早白垩世走滑拉分盆地。沉积相分析结果显示,盆地内部发育不同的沉积相组合,且呈现明显的时空变化特征。盆地充填序列分析表明,徽成盆地的沉积演化可划分为4个阶段:田家坝组沉积时期、周家湾组沉积时期、鸡山组沉积早期和鸡山组沉积晚期。田家坝组沉积时期,盆地南部以冲积扇砾岩和辫状河砂、砾岩沉积组合为主;周家湾组沉积时期,盆地西部以冲积扇砾岩和辫状河砂、砾岩沉积组合为主;鸡山组沉积时期,盆地北部和南部以冲积扇砾岩和辫状河砂、砾岩沉积为主。在整个沉积过程中,盆地中心表现为湖泊(前三角洲)相细粒沉积,而河流和三角洲体系则分布于冲积扇和深水湖泊(前三角洲)沉积之间。古流向和物源恢复结果证明,盆地沉积物主体来自于盆地北部、南部的花岗岩和前侏罗纪地层。盆地构造沉降和沉积充填过程主要受控于盆地北缘徽凤断裂,盆地南部抬升与盆地边界断层的活动密切相关,是盆地的主要物源区。  相似文献   

17.
通过野外地质调查和地层对比,将尼玛北部盆地新生代陆相地层定为牛堡组。根据岩石组合和沉积特征分析,尼玛北部盆地牛堡组可划分为扇三角洲相、湖泊相和冲积扇相。扇三角洲相可进一步划分为扇三角洲前缘和前扇三角洲2种亚相;湖泊相可划分为半深湖—深湖和滨湖—浅湖2种亚相。盆地的演化特征可分为盆地形成初始期、盆地扩张期和盆地萎缩期,3期的演化可分别对应牛堡组的一段、二段和三段。尼玛北盆地发育的各个阶段都跟古气候变化和构造活动有很大的联系,两者共同影响着盆地发育的各个阶段。结合前人的研究资料,认为尼玛盆地的发育时代为早白垩世末期—晚白垩世初。根据盆地边缘相与半深湖—深湖沉积相伴生、牛堡组底部发现火山岩夹层等沉积特征,可以推断尼玛盆地是一个具有走滑拉张性质的盆地。  相似文献   

18.
青藏高原北羌塘地区晚三叠世地层展布和沉积型式   总被引:10,自引:3,他引:10  
北羌塘盆地地处拉竹龙-金沙江缝合带和双湖构造混杂岩带之间,自北向南可划分出5个沉积相带/岩石地层单位:以砂泥质复理石-洋岛、岛弧型火山岩-大理岩岩石组合沉积为特征的若拉岗日群,以深水复理石盆地相沉积为特征的藏夏河组,以深水暗色细碎屑岩盆地相沉积为特征的结扎群,以开阔台地相/缓坡相碳酸盐岩沉积为特征的菊花山组,以三角洲相含煤碎屑岩系沉积为特征的土门格拉群.晚三叠世北羌塘盆地显示为南缓北陡的箕状沉积格局,盆地内充填物为南薄北厚的楔形沉积体,且双物源、沉降中心和沉积中心不一致,表明其具有前陆盆地的一系列沉积特征.  相似文献   

19.
鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究   总被引:1,自引:1,他引:0  
通过研究构造背景、野外露头、岩性组合、沉积构造、古生物特征和测井曲线特征,分析和总结鄂尔多斯盆地白垩系洛河组至环河华池组沉积相、相带分布范围和沉积特征。洛河组主要沉积了冲积扇相、风成沉积相、辫状河相和沙漠相;而在环河华池组主要沉积了湖相、三角洲相、曲流河相及风成砂岩夹层。平面上沉积相带的变化规律性较强,由盆地边缘的冲积相、冲积—河流相砾岩向盆内渐变为河流相—滨浅湖—半深湖相泥岩。沉积特征受构造运动影响和沉积相带控制,洛河组是从山缘向盆地内砂岩厚度迅速变薄、尖灭;环河华池组岩性变化表现为北粗南细、东粗西细,在北部砂体呈现东薄西厚,东北向西南增厚,在南部砂体呈近南北向展布,东薄西厚,南薄北厚。  相似文献   

20.
祁连山北缘旱峡地区发育完整的下白垩统下沟组-中沟组沉积序列;以陆源碎屑岩为主,发育砾岩、砂岩、钙质粉砂岩和页岩等;其中砾石分选差、磨圆一般、成分以灰白色砂岩为主,砂岩成分、结构成熟度中等-差。岩石组合、沉积序列和综合沉积特征研究表明,下沟组和中沟组主要由湖泊、扇三角洲、河流等3种类型沉积相、亚相与微相类型组成,发育了一系列重力流成因的沉积类型;湖泊沉积主要发育在下沟组底部和中沟组,扇三角洲沉积分布在下沟组中-上部,中沟组发育河流沉积。研究区早白垩世中期古流向以EN向为主,早白垩世晚期以W向为主,表明沉积沉降中心也由早期的旱峡西移至研究区西南侧。在综合分析的基础上,建立了研究区下白垩统下沟组-中沟组沉积相模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号