首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

2.
ABSTRACT It is important to understand the exact process whereby very large amounts of sediment are transported. This paper reports peculiar conglomerate beds reflecting the transition of submarine debris flows into hyperconcentrated flows, something that has been well documented only in subaerial debris-flow events until now. Voluminous debris flows generated along a Cretaceous submarine channel, southern Chile, transformed immediately into multiphase flows. Their deposits overlie fluted or grooved surfaces and comprise a lower division of clast-supported and imbricated pebble–cobble conglomerate with basal inverse grading and an upper division of clast- to matrix-supported, disorganized conglomerate with abundant intraformational clasts. The conglomerate beds suggest temporal succession of turbidity current, gravelly hyperconcentrated flow, and mud-rich debris flow phases. The multiphase flows resulted from progressive dilution of gravelly but cohesive debris flows that could hydroplane, in contrast to the flow transitions in subaerial environments, which involve mostly non-cohesive debris flows. This finding has significant implications for the definition, classification, and hazard assessment of submarine mass-movement processes and characterization of submarine reservoir rocks.  相似文献   

3.
The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.  相似文献   

4.
The pyroclastic deposits of Etna have been correlated over the whole volcanic edifice for the first time, allowing the construction of a continuous record of tephra-producing events, which extends from approximately 100 ka to the Present. In this interval, five main periods of explosive activity have been identified: (a) ~100-ka strombolian to subplinian activity; (b) 80- to 100-ka plinian benmoreitic activity; (c) 16- to 80-ka strombolian to subplinian from basaltic to mugearitic activity; (d) 15.5- to 15-ka plinian benmoreitic activity accompanying the caldera-forming eruptions of the Ellittico Volcano; and (e) the most recent 13-ka basaltic explosive activity of strombolian and subplinian type of the present edifice that also includes the 122-B.C. plinian eruption. This study results in a semi-quantitative and in some cases quantitative definition of the intensity and chronology of the explosive activity at Etna. Moreover, this work gives a new significance to the volcanic hazards of Etna, a volcano generally considered to be the site of gentle effusive eruptions.  相似文献   

5.
Subaqueous tuff deposits within the lower Miocene Lospe Formation of the Santa Maria Basin, California, are up to 20 m thick and were deposited by high density turbidity flows after large volumes of ash were supplied to the basin and remobilized. Tuff units in the Lospe Formation include a lower lithofacies assemblage of planar bedded tuff that grades upward into massive tuff, which in turn is overlain by an upper lithofacies assemblage of alternating thin bedded, coarse grained tuff beds and tuffaceous mudstone. The planar bedded tuff ranges from 0.3 to 3 m thick and contains 1-8 cm thick beds that exhibit inverse grading, and low angle and planar laminations. The overlying massive tuff ranges from 1 to 10 m thick and includes large intraclasts of pumiceous tuff and stringers of pumice grains aligned parallel to bedding. The upper lithofacies assemblage of thin bedded tuff ranges from 0.4 to 3 m thick; individual beds are 6-30 cm thick and display planar laminae and dewatering structures. Pumice is generally concentrated in the upper halves of beds in the thin bedded tuff interval. The association of sedimentary structures combined with semi-quantitative analysis for dispersive and hydraulic equivalence of bubble-wall vitric shards and pumice grains reveals that particles in the planar bedded lithofacies are in dispersive, not settling, equivalence. This suggests deposition under dispersive pressures in a tractive flow. Grains in the overlying massive tuff are more closely in settling equivalence as opposed to dispersive equivalence, which suggests rapid deposition from a suspended sediment load. The set of lithofacies that comprises the lower lithofacies assemblage of each of the Lospe Formation tuff units is analogous to those of traction carpets and subsequent suspension sedimentation deposits often attributed to high density turbidity flows. Grain distributions in the upper thin bedded lithofacies do not reveal a clear relation for dispersive or settling equivalence. This information, together with the association of sedimentary features in the thin bedded lithofacies, including dewatering structures, suggests a combination of tractive and liquefied flows. Absence of evidence for elevated emplacement temperatures (e.g. eutaxitic texture or shattered crystàls) suggests emplacement of the Lospe Formation tuff deposits in a cold state closely following pyroclastic eruptions. The tuff deposits are not only a result of primary volcanic processes which supplied the detritus, but also of processes which involved remobilization of unconsolidated ash as subaqueous sediment gravity flows. These deposits provide an opportunity to study the sedimentation processes that may occur during subaqueous volcaniclastic flows and demonstrate similarities with existing models for sediment gravity flow processes.  相似文献   

6.
A 1600-m-thick succession of the Miocene Horse Camp Formation (Member 2) exposed in east-central Nevada records predominantly terrigenous clastic deposition in subaerial and subaqueous fan-delta environments and nearshore and offshore lacustrine environments. These four depositional environments are distinguished by particular associations of individual facies (14 defined facies). Subaerial and subaqueous fan-delta facies associations include: ungraded, matrix-and clast-supported conglomerate; normally graded, matrix- and clast-supported conglomerate; ungraded and normally graded sandstone; and massive to poorly laminated mudstone. Subaqueous fan-delta deposits typically have dewatering structures, distorted bedding and interbedded mudstone. The subaerial fan-delta environment was characterized by debris flows, hyperconcentrated flows and minor sheetfloods; the subaqueous fan-delta environment by debris flows, high- and low-density turbidity currents, and suspension fallout. The nearshore lacustrine facies association provides examples of deposits and processes rarely documented in lacustrine environments. High-energy oscillatory wave currents, probably related to a large fetch, reworked grains as large as 2 cm into horizontally stratified sand and gravel. Offshore-directed currents produced uncommonly large (typically 1–2 m thick) trough cross-stratified sandstone. In addition, stromatolitic carbonate interbedded with stratified coarse sandstone and conglomerate suggests a dynamic environment characterized by episodic terrigenous clastic deposition under high-energy conditions alternating with periods of carbonate precipitation under reduced energy conditions. Massive and normally graded sandstone and massive to poorly laminated mudstone characterize the offshore lacustrine facies association and record deposition by turbidity currents and suspension fallout. A depositional model constructed for the Horse Camp Formation (Member 2) precludes the existence of all four depositional environments at any particular time. Rather, phases characterized by deposition in subaerial fan, nearshore lacustrine and offshore lacustrine environments alternated with phases of subaerial fan-delta, subaqueous fan-delta and offshore lacustrine deposition. This model suggests that high-energy nearshore currents due to deep water along the lake margin reworked sediment of the fan edge, thus preventing development of a subaqueous fan-delta environment and promoting development of a well-defined nearshore lacustrine environment. Low-energy nearshore currents induced by shallow water along the  相似文献   

7.
无水滑的水下泥石流运动速度的实验研究   总被引:1,自引:1,他引:1       下载免费PDF全文
余斌 《水科学进展》2007,18(5):641-647
水下泥石流阻力与陆面中泥石流运动阻力的不同点在于上表面的掺混阻力和剪切阻力。由一系列的室内无水滑的水下泥石流和陆面泥石流实验研究得出:水下泥石流运动速度与相同条件下陆面泥石流运动速度之比随不同性质的泥石流,如粘性和稀性泥石流,由于其屈服应力的巨大差别,有很大的不同。由实验得到的由泥石流体的容重和量纲为一的泥石流屈服应力表达的水下无水滑泥石流运动速度和陆面泥石流运动速度用于无水滑水下泥石流运动速度计算较好。  相似文献   

8.
The parautochthonous Cloridorme Formation is a syn-orogenic flysch succession that was deposited in an elongate foredeep basin as mainly lower middle-fan, outer-fan, and basin-floor deposits. The basin-floor deposits (about 1.5 km thick) are confined to members β1, β2 and γ1, and are characterized by graded, thick (1–10 m) mud-rich calcareous greywacke beds previously interpreted as deposits of concentrated, muddy, unidirectional turbidity currents that locally generated backset (antidune) lamination in internally stratified flows. The dominant flow directions were from east to west, but west to east transport also occurred, as seen in the orientation of ripples, climbing ripples, flutes, consistently overturned flames, and grain imbrication. We believe that the flows that deposited these thick calcareous greywacke beds reversed by roughly 180° one or more times during deposition of the lower sandy part of the beds. Flow reversals are consistent with the sharp grain-size breaks and mud partings within sandy divisions. Measurement of grain fabric relative to stratification in the most celebrated ‘antidune’ bedforms indicates flow from west to east; thus, the bedforms were produced by west-to-east migration of megaripples, not by the upcurrent migration of antidunes. The thick muddy beds were deposited by large-volume, muddy flows that were deflected and reflected from the side slopes and internal topographic highs of a confined basin floor, much like the ‘Contessa’ and similar beds of the Italian Apennines. Large quantities of suspended mud were ponded above the irregular basin floor and settled to produce the thick silty mudstone caps seen on each bed. Because of their mode of emplacement, we propose that these beds be called contained turbidites.  相似文献   

9.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

10.
In Sicily, Messinian evaporitic sedimentary deposits are developed under a wide variety of hypersaline conditions and in environments ranging from continental margin (subaerial), to basin-margin supratidal, to intertidal, to subtidal and out into the hypersaline basin proper. The actual water depth at the time of deposition is indeterminate; however, relative terms such as ‘wave base’ and ‘photic zone’ are utilized. The inter-fingering relationships of specific evaporitic facies having clear and recognizable physical characteristics are presented. These include sub-aerial deposits of nodular calcium sulphate formed displacively within clastic sediments; gypsiferous rudites, arenites and arenitic marls, all of which are reworked sediments and are mixed in varying degrees with other clastic materials (subaerial, supratidal, and intertidal to deep basinal deposits). Laminated calcium sulphate alternating with very thin carbonate interlaminae and having two different aspects; one being even and continuous and the other of a wavy, irregular appearance (subtidal, intertidal, and supratidal deposits). Nodular calcium sulphate beds, usually associated with wavy, irregular laminated beds (supratidal, sabkha deposits); very coarsely crystalline gypsum beds (selenite), associated with more even, laminated beds (subaqueous, intertidal to subtidal deposits); wavy anastomozing gypsum beds, composed of very fine, often broken crystals (subaqueous, current-swept deposits); halite having hopper and chevron structures (supratidal to intertidal); and halite, potash salts, etc. having continuous laminated structure (subaqueous, possibly basinal). Evidence for diagenetic changes is observed in the calcium sulphate deposits which apparently formed by tectonic stress and also by migrating hypersaline waters. These observations suggest that the common, massive form of alabastrine gypsum (or anhydrite, in the subsurface) may not always be ascribed to original depositional features, to syndiagenesis or to early diagenesis but may be the result of late diagenesis.  相似文献   

11.
The Hianana Volcanics consist of bedded tuff and dacitic lava that form a locally mappable unit within the extensive, Late Permian silicic volcanic sequence of northeastern New South Wales. Principal components of the bedded tuff are crystal and volcanic lithic fragments ranging from coarse ash to lapilli, accompanied by variable amounts of fine ash matrix. Well denned plane parallel thin bedding is characteristic. Sandwave bed forms, including low‐angle cross‐beds and wavy beds, are confined to an area of 2–3 km2 coinciding with the thickest sections (70 m) of bedded tuff. A high‐aspect ratio flow of porphyritic dacitic lava overlies the bedded tuff in the same area. The setting, lithofacies, extent and geometry of the bedded tuffs of the Hianana Volcanics are comparable with modern tuff rings which are composed of the deposits from base surges generated by explosive phreatomagmatic eruptions at primary volcanic vents. Many of these have also discharged lava late in their activity. Proximal parts of the Hianana tuff ring were buried by the porphyritic lava after the phreatomagmatic eruptions had ceased. In more distal sections, the bedded tuff is less than 10 m thick and dominantly comprises fine grained, plane parallel, very thin beds and laminae; these features suggest an origin by fallout from ash clouds that accompanied the phreatomagmatic eruptions. The distal ash was covered and preserved from erosion by a layer of welded ignimbrite, the source of which is unknown.  相似文献   

12.
The volcanic-sedimentary succession of the Ventersdorp Supergroup which is virtually undisturbed tectonically and of low-grade (greenschist facies) metamorphism, affords a unique opportunity for studying the interplay between volcanic and sedimentary processes. The transitional sequence between the Rietgat and Bothaville Formations consists of a number of lithofacies. These are a basal breccia representing pyroclastic and laharic deposits, an overlying breccia—arenite—conglomerate (BAC) which formed by debris flow and fluvial processes, an arenite deposited offshore during a transgression, and an upper conglomerate laid down on a beach. In the volcaniclastic BAC and arenite lithofacies the presence of thin tuff beds, deformed acid lava fragments (bombs?) and glass shards in the arenaceous matrix suggest syndepositional volcanism.Sedimentation took place along the flanks of an asymmetrical, actively volcanic, domal structure which consisted partly of unstable pyroclastic deposits in the east. Resedimentation of the pyroclastic debris by subaerial debris flows and braided streams built a volcaniclastic fan lobe at the foot of the domal structure. As volcanic activity subsided, sands derived from a granitic terrain, mixed with minor air-fall debris to subsequently cover the fan lobe during a regional transgression.  相似文献   

13.
This study is focused on the analyses of a Chaschuil section (27° 49′ S–68° 04′ W), north of the Argentina Famatina Belt, where Ordovician explosive-effusive arc volcanism took place under subaerial to subaqueous marine conditions. In analyzing the profile, we have recognized an Arenigian succession composed by dominant volcaniclastic lithofacies represented by volcaniclastic debris flow, turbidity current and minor resedimented syn-eruptive pyroclastic depositsand lavas. The upper portions of succession are represented by volcanogenic sedimentary lithofacies with fossiliferous levels. Great volumes of the volcaniclastic deposits are strongly controlled in their transport by mass flow processes. These representative deposits provide significant data in relation to the coeval volcanic events for recognizing a continuous explosive volcanism together a minor effusive activity and the degradation of volcanic edifices. Likewise mass flow deposits give indications of the high rate of sedimentation, strong slope control and instability episodes in the basin, typical of those volcanic environments. That substantial information was the key to understand the features and evolution of the Arenigian basin in the north of the Famatina System.  相似文献   

14.
Glacigenic sediments exposed in coastal cliffs cut through undulatory terrain fronting the Last Glacial Maximum laterofrontal moraine at Waterville on the Iveragh Peninsula, southwest Ireland, comprise three lithofacies. Lithofacies 1 and 2 consist of interdigitated, offlapping and superimposed ice‐proximal subaqueous outwash and stacked sequences of cohesionless and cohesive subaqueous debris flows, winnowed lag gravels and coarse‐grained suspension deposits. These are indicative of sedimentation in and around small grounding line fans that prograded from an oscillating glacier margin into a proglacial, interlobate lake. Lithofacies 3 comprises braided river deposits that have undergone significant syn‐sedimentary soft‐sediment deformation. Deposition was likely related to proglacial outwash activity and records the reduction of accommodation space for subaqueous sedimentation, either through the lowering of proglacial water levels or due to basin infilling. The stratigraphic architecture and sedimentology of the moraine at Waterville highlight the role of ice‐marginal depositional processes in the construction of morphostratigraphically significant ‘end moraine’ complexes in Great Britain and Ireland. Traditional ‘tills’ in these moraines are often crudely stratified diamictons and gravelly clinoforms deposited in ice‐proximal subaqueous and subaerial fans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The behaviour of subaerial particle-laden gravity currents (e.g. pyroclastic flows, lahars, debris flows, sediment-bearing floods and jökulhlaups) flowing into the sea has been simulated with analogue experiments. Flows of either saline solution, simple suspensions of silicon carbide (SiC) in water or complex suspensions of SiC and plastic particles in methanol were released down a slope into a tank of water. The excess momentum between subaerial and subaqueous flow is dissipated by a surface wave. At relatively low density contrasts between the tank water and the saline or simple suspensions, the flow mixture enters the water and forms a turbulent cloud involving extensive entrainment of water. The cloud then collapses gravitationally to form an underwater gravity current, which progresses along the tank floor. At higher density contrasts, the subaerial flow develops directly into a subaqueous flow. The flow slows and thickens in response to the reduced density contrast, which is driving motion, and then continues in the typical gravity current manner. Complex suspensions become dense flows along the tank floor or buoyant flows along the water surface, if the mixtures are sufficiently denser or lighter than water respectively. Flows of initially intermediate density are strongly influenced by the internal stratification of the subaerial flow. Material from the particulate-depleted upper sections of the subaerial flow becomes a buoyant gravity current along the water surface, whereas material from the particulate-enriched lower sections forms a dense flow along the tank floor. Sedimentation from the dense flow results in a reduction in bulk density until the mixture attains buoyancy, lifts off and becomes a secondary buoyant flow along the water surface. Jökulhlaups, lahars and debris flows are typically much denser than seawater and, thus, will usually form dense flows along the seabed. After sufficient sedimentation, the freshwater particulate mixture can lift off to form a buoyant flow at the sea surface, leading to a decoupling of the fine and coarse particles. Flood waters with low particulate concentrations (<2%) may form buoyant flows immediately upon entering the ocean. Subaerial pyroclastic flows develop a pronounced internal stratification during subaerial run-out and, thus, a flow-splitting behaviour is probable, which agrees with evidence for sea surface and underwater flows from historic eruptions of Krakatau and Mont Pelée. A pyroclastic flow with a bulk density closer to that of sea water may form a turbulent cloud, resulting in the deposition of much of the pyroclasts close to the shore. Dense subaqueous pyroclastic flows will eventually lift off and form secondary buoyant flows, either before or after the transformation to a water-supported nature.  相似文献   

16.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

17.
河南留山盆地上三叠统沉积粒度分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过留山盆地上三叠统概率累积曲线、粒度参数和C-M图解等分析,沉积物粒度特征主要反映了扇三角洲泥石流、水下分流河道和河口坝沉积。下部太山庙组显示了水流由强至弱,搬运能力逐渐减小的过程;上部太子山组显示出水流不稳,流速交替多变的特点。粒度特征也显示了紊流作用的强烈影响,而紊流作用的产生可能与快速水流以及较高的悬浮颗粒含量有关。  相似文献   

18.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

19.
扇三角洲是一类非常重要的油气聚集场所,准确可靠的扇三角洲沉积模式,对储集层预测具有重要意义。准噶尔盆地玛北地区三叠系百口泉组发育一套扇三角洲沉积体系,虽然前人做了大量的研究,但在沉积模式方面仍存在一些争议。通过现代沉积考察、前人水槽模拟实验、研究区测井、岩心等资料综合分析发现: (1)玛北地区百口泉组扇三角洲平原发育3类微相,即辫状河道微相、砾质漫滩微相、水上朵前泥微相,同时可见泥石流沉积;玛北地区百口泉组扇三角洲前缘发育2种微相,即砾质浅滩微相、砂质浅滩微相,同时可见碎屑流沉积;(2)扇三角洲平原河道与河道间均为砂砾岩,河道砂砾岩的分选性明显好于河道间砂砾岩;(3)扇三角洲前缘不发育水下分流河道,扇三角洲前缘的砂砾岩主体是由扇三角洲平原片流入湖形成的,呈席状。  相似文献   

20.
为探讨陆相断陷湖盆陡坡带构造活动控制下水下粗碎屑岩沉积特征、搬运机制及其演化规律,以滦平断陷盆地陡坡带下白垩统西瓜园组为研究对象,采用无人机倾斜摄影、实测剖面、砾石定向性定量表征等技术方法,从沉积背景、岩相类型、沉积单元及相序特征等方面开展野外露头解剖工作.滦平盆地西瓜园组沉积时期,近岸水下扇沉积于构造沉降速率大、湖平面上升、深水、古地貌陡峭环境,洪水携带粗碎屑沉积沿陡坡带入湖,底部发育与地震活动相关的砾质碎屑流,伴随发育滑动—滑塌沉积,上部发育高密度浊流.随着沉积物不断供给,斜坡坡度逐渐减小;随着粗碎屑沉积搬运距离不断增加,砂砾质碎屑流中砾石表现出明显定向性,高密度浊流所占厚度比例增加;末端以低密度浊流为主.扇三角洲沉积于构造沉降速率相对较低、水深相对较浅、古地貌相对平缓的环境,发育相对成熟的供源体系,汇水系统长度较长,扇三角洲前缘粗碎屑岩由碎屑流向高密度浊流、牵引流、低密度浊流转换.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号