首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

2.
We present a catalogue of 147 serendipitous X-ray sources selected to have hard spectra ( α <0.5) from a survey of 188 ROSAT fields. Such sources must be the dominant contributors to the X-ray background at faint fluxes. We have used Monte Carlo simulations to verify that our technique is very efficient at selecting hard sources: the survey has 10 times as much effective area for hard sources as it has for soft sources above a 0.5–2 keV flux level of 10−14 erg cm−2 s−1. The distribution of best-fitting spectral slopes of the hard sources suggests that a typical ROSAT hard source in our survey has a spectral slope α ∼0. The hard sources have a steep number flux relation (d N /d S ∝ S − γ with a best-fitting value of γ =2.72±0.12) and make up about 15 per cent of all 0.5–2 keV sources with S >10−14 erg cm−2 s−1. If their N ( S ) continues to fainter fluxes, the hard sources will comprise ∼40 per cent of sources with 5×10−15< S <10−14 erg cm−2 s−1. The population of hard sources can therefore account for the harder average spectra of ROSAT sources with S <10−14 erg cm−2 s−1. They probably make a strong contribution to the X-ray background at faint fluxes and could be the solution to the X-ray background spectral paradox.  相似文献   

3.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

4.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

5.
We analyse Chandra , XMM–Newton and Hubble Space Telescope ( HST ) data of the double-nucleus Ultraluminous Infrared Galaxy (ULIRG), Mrk 463. The Chandra detection of two luminous  ( L 2–10 keV= 1.5 × 1043  and  3.8 × 1042 erg cm−2 s−1)  , unresolved nuclei in Mrk 463 indicates that this galaxy hosts a binary active galactic nucleus (AGN), with a projected separation of ≃3.8 kpc (  3.83 ± 0.01  arcsec). While the East nucleus was already known to be a type 2 Seyfert (and this is further confirmed by our Chandra detection of a neutral iron line), this is the first unambiguous evidence in favour of the AGN nature of the West nucleus. Mrk 463 is therefore the clearest case so far for a binary AGN, after NGC 6240.  相似文献   

6.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

7.
Recent work by Risaliti, Maiolino & Salvati suggests that more than half of all Seyfert 2 galaxies in the local Universe are Compton-thick ( N H>1024 cm−2). This has implications for AGN synthesis models for the X-ray background, the flexibility of which for the inclusion of large numbers of high- z type 2 sources we examine here. We highlight the importance of Compton down-scattering in determining the individual source spectra and the fit to the X-ray background spectrum, and demonstrate how parameter space 'opens up' considerably if a super-solar iron abundance is assumed for the absorbing material. This is illustrated with a model which satisfies the present constraints, but which predicts substantial numbers of type 2 sources at the faint flux levels soon to be probed for the first time by the Chandra and XMM missions. We demonstrate also how a strong negative K -correction facilitates the detection of sources with 10∼24 N H1025 cm−2 out to the highest redshifts at which they could plausibly exist.  相似文献   

8.
An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2–10 keV X-ray source counts down to a flux limit ∼ 2 × 10−14 erg cm−2 s−1. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 × 5.6 arcmin2 each) into which the SIS0 has been divided, by means of ray-tracing simulations with improved optical constants in the X-ray telescope. The very extended 'sidelobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2−12) × 10−14 erg cm−2 s−1 are found to be close to a Euclidean form which extrapolates well to previous results from higher fluxes and are in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. The possibility that the source counts flatten to a sub-Euclidean form, as is observed at soft energies in ROSAT data, is only weakly constrained to happen at a flux < 1.8 × 10−12 erg cm−2 s−1 (90 per cent confidence). Down to the sensitivity limit of our analysis, the integrated contribution of the sources the imprint of which is seen in the fluctuations amounts to ∼ 35 ± 13 per cent of the extragalactic 2–10 keV X-ray background.  相似文献   

9.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

10.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

11.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

12.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

13.
We calculate the expected mid-infrared (MIR) molecular hydrogen line emission from the first objects in the Universe. As a result of their low masses, the stellar feedback from massive stars is able to blow away their gas content and collect it into a cooling shell where H2 rapidly forms and IR roto-vibrational (as for example the rest-frame 2.12 μm) lines carry away a large fraction (up to 10 per cent) of the explosion energy. The fluxes from these sources are in the range 10−21–10−17 erg s−1 cm−2 . The highest number counts are expected in the 20-μm band, where about 105 sources deg−2 are predicted at the limiting flux of 3×10−18 erg s−1 cm−2. Among the planned observational facilities, we find that the best detection perspectives are offered by the Next Generation Space Telescope ( NGST ), which should be able to reveal about 200 first objects in one hour observation time at its limiting flux in the above band. Therefore, mid-IR instruments appear to represent perfect tools to trace star formation and stellar feedback in the high ( z ≳5) redshift Universe.  相似文献   

14.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

15.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

16.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

17.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

18.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

19.
We present the results of a detailed spectral analysis of optically faint hard X-ray sources in the Chandra deep fields selected on the basis of their high X-ray to optical flux ratio (X/O). The stacked spectra of high X/O sources in both Chandra deep fields, fitted with a single power-law model, are much harder than the spectrum of the X-ray background (XRB). The average slope is also insensitive to the 2–8 keV flux, being approximately constant around Γ≃ 1 over more than two decades, strongly indicating that high X/O sources represent the most obscured component of the XRB. For about half of the sample, a redshift estimate (in most of the cases a photometric redshift) is available from the literature. Individual fits of a few of the brightest objects and of stacked spectra in different redshift bins imply column densities in the range  1022–1023.5 cm−2  . A trend of increasing absorption towards higher redshifts is suggested.  相似文献   

20.
We present a new method for determining the sensitivity of X-ray imaging observations, which correctly accounts for the observational biases that affect the probability of detecting a source of a given X-ray flux, without the need to perform a large number of time-consuming simulations. We use this new technique to estimate the X-ray source counts in different spectral bands (0.5–2, 0.5–10, 2–10 and 5–10 keV) by combining deep pencil-beam and shallow wide-area Chandra observations. The sample has a total of 6295 unique sources over an area of  11.8 deg2  and is the largest used to date to determine the X-ray number counts. We determine, for the first time, the break flux in the 5–10 keV band, in the case of a double power-law source count distribution. We also find an upturn in the 0.5–2 keV counts at fluxes below about  6 × 10−17 erg s−1 cm−2  . We show that this can be explained by the emergence of normal star-forming galaxies which dominate the X-ray population at faint fluxes. The fraction of the diffuse X-ray background resolved into point sources at different spectral bands is also estimated. It is argued that a single population of Compton thick active galactic nuclei (AGN) cannot be responsible for the entire unresolved X-ray background in the energy range 2–10 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号