首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time preferences are a dominant influence in cost-benefit analyses of long-term issues such as climate change. FUND, a model for optimal emission control, is used to spell out this influence. Classic discounting at various rates is contrasted with Heal discounting where the discount factor depends logarithmically on the time distance (it does linearly in the classic case), and Rabl discounting where the discount rate is set to zero at a certain point in the future. The choice of the discount rate has a strong influence on total and short-term emission reduction. The effect of Rabl and Heal discounting is like lowering the classic discount rate. International cooperation has a larger effect on optimal emission reduction, however, than does the discount rate. Larger still is the influence of explicitly taking up long-term goals for atmospheric concentrations in the welfare function, using a modification of the Chichilnisky criterion.  相似文献   

2.
3.
Discounting and relative prices   总被引:1,自引:1,他引:1  
Environmentalists are often upset at the effect of discounting costs of future environmental damage, e.g., due to climate change. An often-overlooked message is that we should discount costs but also take into account the increase in the relative price of the ecosystem service endangered. The effect of discounting would thus be counteracted, and if the rate of price rise of the item was fast enough, it might even be reversed. The scarcity that leads to rising relative prices for the environmental good will also have direct effects on the discount rate itself. The magnitude of these effects depends on properties of the economy’s technology and on social preferences. We develop a simple model of the economy that illustrates how changes in crucial technology and preference parameters may affect both the discount rate and the rate of change of values of environmental goods. The combined effect of discounting and the change of values of environmental goods is more likely to be low – or even negative – the lower the growth rate of environmental quality (or the larger its decline rate), and the lower the elasticity of substitution between environmental quality and produced goods.  相似文献   

4.
Abstract

The social cost of carbon (SCC) is the value of the climate change impacts from 1 tonne of carbon emitted today as CO2, aggregated over time and discounted back to the present day. We used PAGE2002, the same probabilistic integrated assessment model as used by the Stern Review (Stern et al., 2006), to calculate the SCC and to examine how it varies with discount rate; and find that it is not sensitive to the path of emissions on which the tonne of carbon is superimposed. The mean value of the SCC is $43 per tonne under both a business-as-usual scenario, and under a scenario aimed at stabilizing CO2 concentrations at 550 ppm. This counter-intuitive result is caused by the interplay between the logarithmic relationship between forcing and concentration, the nonlinear relationship of damage to temperature, and discounting. However, the SCC is sensitive to a number of scientific and economic inputs to the model. Two recent distributions for the sensitivity of climate to a doubling of atmospheric CO2 (Murphy et al., 2004; Stainforth et al., 2005) increase the mean value of the SCC from $43 to $68 and $90 per tonne. Using a pure rate of time preference of 0.1% per year, as in the Stern Review, gives a mean SCC of $365 per tonne.  相似文献   

5.
《Global Environmental Change》2007,17(3-4):297-301
The Stern Review on The Economics of Climate Change is one of the few cost-benefit analyses of climate change to come out in favour of immediate and decisive action to reduce greenhouse gas emissions. The choice of a low discount rate is the main reason for the Review's divergence in conclusions compared to other economic studies. I argue that the Review's ethical reasons for a low discount rate are defendable, but unlikely to find wider public support. In order to justify spending a large amount of scarce resources for the purpose of limiting climate change, it is necessary to move beyond the discounting debate. Unfortunately, the Review did not develop a persuasive argument for why climate change threatens to inflict upon future generations irreversible and non-substitutable damage to and loss of natural capital. This represents a missed opportunity as it would have provided a much more compelling case for drastic action than the Review's arguments for a low discount rate.  相似文献   

6.
Economics of climate change mitigation forest policy scenarios for Ukraine   总被引:1,自引:0,他引:1  
Abstract

This article reveals the contribution of woodland expansion in Ukraine to climate change mitigation policies. The opportunities for climate change mitigation of three policy scenarios: (1) carbon storage in forests, (2) carbon storage and additional wood-for-fuel substitution, and (3) carbon storage with additional sink policy for wood products, are investigated by using a simulation technique, in combination with cost—benefit analysis. The article concludes that the Ukraine's forests and their expansion offer a low-cost opportunity for carbon sequestration. Important factors that influence the results are the discount rate and the time horizon considered in the models. The findings provide evidence that the storage climate change mitigation forest policy scenario is most viable for the country, under the assumptions considered in this research.  相似文献   

7.
With advancing climate change there is a growing need to include short-lived climate forcings in cost-efficient mitigation strategies to achieve international climate policy targets. Tools are required to compare the climate impact of perturbations with distinctively different atmospheric lifetimes and atmospheric properties. We present a generic approach for relating the climate effect of short-lived climate forcers (SLCF) to that of CO2 emissions. We distinguish between three alternative types of metric-based factors that can be used to derive CO2 equivalences for SLCF: based on forcing, activity and fossil fuel consumption. We derive numerical values for a wide range of parameter assumptions and apply the resulting generalised approach to the practical example of aviation-induced cloudiness. The evaluation of CO2 equivalences for SLCF tends to be more sensitive to SLCF specific physical uncertainties and the normative choice of a discount rate than to the choice of a physical or economic metric approach. The ability of physical metrics to approximate economic-based metrics alters with changing atmospheric concentration levels and trends. Under reference conditions, physical CO2 equivalences for SLCF provide sufficient proxies for economic ones. The latter, however, allow detailed insight into structural uncertainties. They provide CO2 equivalences for SLCF in short term strategies in the face of failing climate policies, and a temporal evolution of CO2 equivalences over time that is noticeably better in line with cost-efficient climate stabilisation.  相似文献   

8.
《Climate Policy》2001,1(4):433-449
One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and documented in current models could substantially alter the stringency of economically optimal IAM policies. Such abrupt climatic changes — or consequent impacts — would be less foreseeable and provide less time to adapt, and thus would have far greater economic or environmental impacts than gradual warming. We extend conventional, smooth IAM analysis by coupling a climate model capable of one type of abrupt change to a well-established energy–economy model (DICE). We compare the DICE optimal policy using the standard climate sub-model to our version that allows for abrupt change — and consequent enhanced climate damage — through changes in the strength (and possible collapse) of the North Atlantic thermohaline circulation (THC). We confirm the potential significance of abrupt climate change to economically optimal IAM policies, thus calling into question all previous work neglecting such possibilities — at the least for the wide ranges of relevant social and climate system parameters we consider. In addition, we obtain an emergent property of our coupled social–natural system model: “optimal policies” that do consider abrupt changes may, under relatively low discount rates, calculate emission control levels sufficient to avoid significant abrupt change, whereas “optimal policies” disregarding abrupt change would not prevent this non-linear event. However, there is a threshold in discount rate above which the present value of future damages is so low that even very large enhanced damages in the 22nd century, when a significant abrupt change such as a THC collapse would be most likely to occur, do not increase optimal control levels sufficiently to prevent such a collapse. Thus, any models not accounting for potential abrupt non-linear behavior and its interaction with the discounting formulation are likely to miss an important set of possibilities relevant to the climate policy debate.  相似文献   

9.
Abstract

Economic models of climate change often take the problem seriously, but paradoxically conclude that the optimal policy is to do almost nothing about it. We explore this paradox as seen in the widely used DICE model. Three aspects of that model, involving the discount rate, the assumed benefits of moderate warming, and the treatment of the latest climate science, are sufficient to explain the timidity of the model's optimal policy recommendation. With modifications to those three points, DICE shows that the optimal policy is a much higher and rapidly rising marginal carbon price; and that higher carbon price has a greater effect on physical measures of climate impacts. Our modifications exhibit nonlinear interactions; at least at low discount rates, there is synergy between individual changes to the model. At low discount rates, the inherent uncertainty about future damages looms larger in the analysis, rendering long-run economic modelling less useful. Our analysis highlights the sensitivity of the model to three debatable assumptions; it does not, and could not, lead to a more reliably ‘optimal’ cost of carbon. Cost-effectiveness analysis, focusing on the generally shorter-term cost side of the problem, reduces the economic paradoxes of the long run, and may make a greater contribution than economic optimization modelling.  相似文献   

10.
We report the results of an uncertainty decomposition analysis of the social cost of carbon as estimated by FUND, a model that has a more detailed representation of the economic impact of climate change than any other model. Some of the parameters particularly influence impacts in the short run whereas other parameters are important in the long run. Some parameters are influential in some regions only. Some parameters are known reasonably well, but others are not. Ethical values, such as the pure rate of time preference and the rate of risk aversion, therefore affect not only the social cost of carbon, but also the importance of the parameters that determine its value. Some parameters, however, are consistently important: cooling energy demand, migration, climate sensitivity, and agriculture. The last two are subject to a large research effort, but the first two are not.  相似文献   

11.
This paper provides an evidence-based contribution to understanding processes of climate change adaptation in water governance systems in the Netherlands, Australia and South Africa. It builds upon the work of Ostrom on institutional design principles for local common pool resources systems. We argue that for dealing with complexities and uncertainties related to climate change impacts (e.g. increased frequency and intensity of floods or droughts) additional or adjusted institutional design propositions are necessary that facilitate learning processes. This is especially the case for dealing with complex, cross-boundary and large-scale resource systems, such as river basins and delta areas in the Netherlands and South Africa or groundwater systems in Western Australia. In this paper we provide empirical support for a set of eight refined and extended institutional design propositions for the governance of adaptation to climate change in the water sector. Together they capture structural, agency and learning dimensions of the adaptation challenge and they provide a strong initial framework to explore key institutional issues in the governance of adaptation to climate change. These institutional design propositions support a “management as learning” approach to dealing with complexity and uncertainty. They do not specify blueprints, but encourage adaptation tuned to the specific features of local geography, ecology, economies and cultures.  相似文献   

12.
Simon Dietz 《Climatic change》2011,108(3):519-541
To what extent does economic analysis of climate change depend on low-probability, high-impact events? This question has received a great deal of attention lately, with the contention increasingly made that climate damage could be so large that societal willingness to pay to avoid extreme outcomes should overwhelm other seemingly important assumptions, notably on time preference. This paper provides an empirical examination of some key theoretical points, using a probabilistic integrated assessment model. New, fat-tailed distributions are inputted for key parameters representing climate sensitivity and economic costs. It is found that welfare estimates do strongly depend on tail risks, but for a set of plausible assumptions time preference can still matter.  相似文献   

13.
Incorporating potential catastrophic consequences into integrated assessment models of climate change has been a top priority of policymakers and modelers alike. We review the current state of scientific understanding regarding three frequently mentioned geophysical catastrophes, with a view toward their implications for integrated assessment modeling. This review finds inadequacies in widespread model assumptions regarding the nature of catastrophes themselves and climate change impacts more generally. The possibility of greatly postponed consequences from near- and medium-term actions suggests that standard discounting practices are inappropriate for the analysis of climate catastrophe. Careful consideration of paleoclimate and geophysical modeling evidence regarding the possibility of changes in ocean circulation suggests a reframing of the source of climate change damages in economic models, placing changes in climate predictability, rather than gradual changes in mean values, at the focus of economic damage assessments. The implications of decreases in predictability for the modeling of adaptation are further discussed.  相似文献   

14.
The idea of market-based carbon emission trading and carbon taxes is gaining in popularity as a global climate change policy instrument. However, these mechanisms might not necessarily have a positive outcome unless their value reflects socioeconomic and environmental impacts and regulations. Moreover, the fact that they have various inherent exogenous and endogenous uncertainties raises serious concerns about their ability to reduce emissions in a cost-effective way. This paper aims to introduce a simple stochastic model that allows the robustness of economic mechanisms for emission reduction under multiple natural and human-related uncertainties to be analyzed. Unlike standard equilibrium state analysis, the model shows that the explicit introduction of uncertainties regarding emissions, abatement costs, and equilibrium states makes it almost impossible for existing market-based trading and carbon taxes to be environmentally safe and cost-effective. Here we propose a computerized multi-agent trading model. This can be viewed as a prototype to simulate an emission trading market that is regulated in a decentralized way. We argue that a market of this type is better equipped to deal with long-term emission reductions, their direct regulation, irreversibility, and “lock-in” equilibria.  相似文献   

15.
16.
One of the main arguments brought forward in favour of the continued use of simple climate-economy models is their transparency, which should enable researchers to easily interpret the simulation results and adapt the model to their specific research interests. We investigate the degree to which this claim is supported in the case of the DICE model but most of our findings are relevant for other welfare-optimizing climate-economy models as well. Specifically, this paper reviews the handling of time discounting in social welfare functions, the combination of different social welfare functions in an analysis, the calibration of uncertain climate parameters, the representation of uncertainty about future climate change, and the evolution of carbon abatement costs over time. We find that each of these aspects has been treated inconsistently in the past, and that these inconsistencies can strongly affect the results of several previous studies. We discuss the methodological questions raised by some of these problems and make specific recommendations how to avoid the problems identified here in future analyses.  相似文献   

17.
A structurally highly simplified, globally integrated coupled climate-economic costs model SIAM (Structural Integrated Assessment Model) is used to compute optimal paths of global CO2 emissions that minimize the net sum of climate damage and mitigation costs. The model is used to study the sensitivity of the computed optimal emission paths with respect to various critical input assumptions. The climate module is represented by a linearized impulse-response model calibrated against a coupled ocean-atmosphere general circulation climate model and a three-dimensional global carbon-cycle model. The cost terms are represented by strongly simplified expressions designed for maximal transparency with respect to sensitive input assumptions. These include the discount rates for mitigation and damage costs, the inertia of the socio-economic system, and the dependence of climate damages on the change in temperature and the rate of change of temperature. Different assumptions regarding these parameters are believed to be the cause of the marked divergences of existing cost-benefit analyses based on more sophisticated economic models. The long memory of the climate system implies that very long time horizons of several hundred years need to be considered to optimize CO2 emissions on time scales relevant for a policy of sustainable development. Cost-benefit analyses over shorter time scales of a century or two can lead to dangerous underestimates of the long term climatic impact of increasing greenhouse-gas emissions. To avert a major long term global warming, CO2 emissions need to be reduced ultimately to very low levels. However, the draw-down can be realized as a gradual transition process over many decades and even centuries. This should nevertheless not be interpreted as providing a time cushion for inaction: the transition becomes more costly the longer the necessary mitigation policies are delayed. However, the long time horizon provides adequate flexibility for later adjustments. Short term energy conservation alone is insufficient and can be viewed only as a useful measure in support of the necessary long term transition to carbon-free energy technologies. For standard climate damage cost expressions, optimal emission paths limiting long term global warming to acceptable sustainable development levels are recovered only if climate damage costs are not significantly discounted. Discounting of climate damages at normal economic rates yields emission paths that are only weakly reduced relative to business as usual scenarios, resulting in high global warming levels that are incompatible with the generally accepted requirements of sustainable development. The solutions are nevertheless logically consistent with the underlying discounting assumption, namely that the occurrence of global warming damages in the distant future as a result of present human activities is of negligible concern today. It follows that a commitment to long term sustainable development, if it in fact exists, should be expressed by an intertemporal relation for the value of the earth's future climate which does not degrade significantly over the time horizon relevant for climate change. Since the future climate is a common assett whose value cannot be determined on the market, the appropriate discount rate for future climate damages should be determined by an assessment of the public willingness to pay today for the mitigation of future climate change. To translate our general conclusions into quantitative cost estimates required by decision makers, the present exploratory study needs to be extended using more detailed disaggregated climate damage and mitigation cost estimates and more realistic socio-economic models, including multi-actor interactions, inherent variability, the role of uncertainty and adaptive control strategies.  相似文献   

18.
Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase. Increasing discount rates increases the economic efficiency factor. In this simple model, short-term sequestration methods, such as afforestation, can even have negative economic efficiencies. We use a more realistic integrated-assessment model to additionally account for potentially important effects such as learning-by-doing and socio-economic inertia on optimal strategies. We measure the economic efficiency of CO2 sequestration by the ratio of the marginal costs of CO2 sequestration and CO2 abatement along optimal trajectories. We show that the positive impacts of investments in CO2 sequestration through the reduction of future marginal CO2 sequestration costs and the alleviation of future inertia constraints can initially exceed the marginal sequestration costs. As a result, the economic efficiencies of CO2 sequestration can exceed 100% and an optimal strategy will subsidize CO2 sequestration that is initially more expensive than CO2 abatement. The potential economic value of a feasible and acceptable CO2 sequestration technology is equivalent – in the adopted utilitarian model – to a one-time investment of several percent of present gross world product. It is optimal in the chosen economic framework to sequester substantial CO2 quantities into reservoirs with small or zero leakage, given published estimates of marginal costs and climate change impacts. The optimal CO2 trajectories in the case of sequestration from air can approach the pre-industrial level, constituting geoengineering. Our analysis is silent on important questions (e.g., the effects of model and parametric uncertainty, the potential learning about these uncertainties, or ethical dimension of such geoengineering strategies), which need to be addressed before our findings can be translated into policy-relevant recommendations.  相似文献   

19.
Projections of future climate change are plagued with uncertainties, causing difficulties for planners taking decisions on adaptation measures. This paper presents an assessment framework that allows the identification of adaptation strategies that are robust (i.e. insensitive) to climate change uncertainties. The framework is applied to a case study of water resources management in the East of England, more specifically to the Anglian Water Services’ 25 year Water Resource Plan (WRP). The paper presents a local sensitivity analysis (a ‘one-at-a-time’ experiment) of the various elements of the modelling framework (e.g., emissions of greenhouse gases, climate sensitivity and global climate models) in order to determine whether or not a decision to adapt to climate change is sensitive to uncertainty in those elements.Water resources are found to be sensitive to uncertainties in regional climate response (from general circulation models and dynamical downscaling), in climate sensitivity and in climate impacts. Aerosol forcing and greenhouse gas emissions uncertainties are also important, whereas uncertainties from ocean mixing and the carbon cycle are not. Despite these large uncertainties, Anglian Water Services’ WRP remains robust to the climate change uncertainties sampled because of the adaptation options being considered (e.g. extension of water treatment works), because the climate model used for their planning (HadCM3) predicts drier conditions than other models, and because ‘one-at-a-time’ experiments do not sample the combination of different extremes in the uncertainty range of parameters. This research raises the question of how much certainty is required in climate change projections to justify investment in adaptation measures, and whether such certainty can be delivered.  相似文献   

20.
An issue that arises when considering the potential damages of climate change is whether it is possible to slow or stop human caused climate change. One suggestion to reduce the threat of global warming is to change our management of forests to offset carbon emissions. This study examines the impacts of such a policy on environmental amenities in existing Douglas-fir forests. In this analysis Douglas-fir forest management is modelled in a Faustmann framework, where the forest produces three goods: timber, carbon sequestration and amenities. Using this framework, the level of amenities under profit-maximizing and carbon-sequestration management regimes are compared. The change in the level of seven specific amenities is modelled. These amenities include trout, wildlife diversity, visual aesthetics, soil stability, deer populations, elk populations, and water yield. The study finds that the effect of a carbon sequestration policy will depend on the discount rate chosen. In most situations externalities vary less than plus or minus ten percent. However, those externalities that exhibit discontinuities in their relationship to forest age may vary a hundred percent or more depending on the discount rate used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号