首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Linear infrastructure networks like roads play a vital role in the socio-economic development of hill towns centered on tourism. Stability of the slopes along the hill roads are therefore a major concern and slope failures lead to disruption of traffic and loss of property/life or both. This study analyses the stability of cut-slopes along the Kodaikkanal – Palani hill road in the Western Ghats, India using rock mass classification systems like rock mass rating (RMR), slope mass rating (SMR) and continuous slope mass rating (CSMR). These geomechanical classifications provide a preliminary assessment of rock quality based on rock strength, discontinuity properties, hydrogeological condition of the slopes and slope stability based on the inherent rock strength parameters, discontinuity orientation and method of excavation. The results showed that both rock quality and discontinuity orientation contribute to type of failure in rock slopes with RMR > 40. SMR results are conservative while CSMR classification is matches more closely to the failures obtained from the field survey. CSMR classification represents continuous slope stability conditions and hence are more suitable for development of spatial database. Cutting of roads, thereby, steepening slopes has a definite influence on the stability of slopes.  相似文献   

2.
Rock slopes require geo-engineering evaluation to assess the instability of critical slopes leading to landslides particularly in Himalayan terrain where rocks are highly jointed, fractured and weathering prone. Interplay of discontinuities in the rocks coupled with other parameters is one of the prime causes of failure of slopes. Engineering rock mass classification, such as, rock mass rating (RMR) and slope mass rating (SMR) along with geological strength index (GSI) have widely been used for stability assessment of rock slopes above tunnel portals, and these classifications are employed here for assessment of stability of slopes of critical nature along Rampur-Powari highway in Himachal Pradesh. In the present study, out of 154 numbers of slopes, a total of 29 have been selected for assessment of their criticality by employing RMR, SMR and GSI.  相似文献   

3.
Occurrences of landslide are most common and critical issue in North-East India. The various types of slope failures have been affected most part of slopes and road section between Malidor to Sonapur area (approx 30 Km) along NH-44 within Jaintia hills district, Meghalaya, India. These slope failures causes considerable loss of life and property along with many inconveniences such as disruption of traffic along highways. The unscientific excavations of rock slopes for road widening or construction purposes may weaken the stability of the slopes. The rocks exposed in the area are highly jointed sandstone and shale of Barail Group of Oligocene age. The Sonapur landslide is most dangerous and destructive rock fall-cum debris flow. The present study includes the kinematic analysis of the slope to assess the potential failure directions as the rocks are highly jointed in some parts of road cut sections. The continuous slope mass rating (CSMR) technique has been applied for slope stability analysis at five vulnerable locations. Kinematic analysis indicates mainly wedge type of failure along with few toppling and planar failures. These failure required immediate treatment to prevent the slide and long term stability of the slope.  相似文献   

4.
刘帝旭  曹平 《岩土力学》2015,36(Z1):408-412
综合灰色系统理论与传统的边坡岩体质量分级方法(SMR法),提出改进SMR法。传统的岩体质量分级方法中定量指标取值离散性很大,造成质量分级结果阶梯变化。灰色系统理论的灰度特征对解决这类小样本、离散性的问题有很好的适用性。首先对传统质量分级方法的评价指标进行灰类划分,确定各指标所占权重,再构建评价指标的三角白化权函数,并基于最大隶属度准则对边坡岩体进行质量分级。最后结合工程边坡实例,与一般工程RMR(岩体质量分级)与SMR法比较,改进SMR法的评价结果更加吻合工程现状,且质量分级稳定性高,表明其应用于边坡岩体质量分级是科学和准确的。  相似文献   

5.
Slope mass rating (SMR) is a commonly used geomechanical classification for the characterization of rock slopes. SMR is computed adding to basic rock mass rating (RMR) index, calculated by characteristic values of the rock mass, several correction factors depending of the discontinuity–slope parallelism, the discontinuity dip, the relative dip between discontinuity and slope and the employed excavation method. In this work a graphical method based on the stereographic representation of the discontinuities and the slope to obtain correction parameters of the SMR (F1, F2 and F3) is presented. This method allows the SMR correction factors to be easily obtained for a simple slope or for several practical applications as linear infrastructures slopes, open pit mining or trench excavations.  相似文献   

6.
In the present study, cut slope stability assessment along ghat road section of Kolli hills was carried out by using various geotechnical parameters of rock and soil slope sections and structural kinematics of major discontinuities is presented. The rock slope (RS) stability assessment was carried out using Rock Mass Rating basic (RMRbasic) and Slope Mass Rating (SMR) classification systems. The type of failure and their Factor of Safety (FOS) for individual RS was calculated using Hoek and Bray method. In the case of soil slopes (SS), the FOS was calculated using Circular Failure Chart (CFC) and Limit Equilibrium (LE) methods. The input data for the slope stability analyses were collected through extensive field work followed by stereonet plotting and laboratory test. There are six rock slope sections, and five soil slope sections were taken into consideration for the cut slope stability analyses. The area depicts class II (RS-1, 2, & 6) and class III (RS-3, 4, & 5) of RMR classes. The SMR result depicts for RS-1, RS-2, and RS-6 are 64.40, 60.02, and 60.70, respectively, and falls in class II stable condition. The SMR values of RS-3 and RS-5 were 44.33 and 57, respectively, and come under the class III partially stable condition. The RS-4 with SMR value of 17.33 falls under the class I completely unstable condition. The FOS of planar failure case indicates that RS-3 (FOS = 0.22) is more unstable, while all other sections are having greater than 1 FOS. The calculated FOS values using CFC method reveals that the FOS is very close to 1 for all the SS sections that fall under completely saturated condition which indicates that these slope sections may fail during heavy rainfall. In LE method, the sections SS-3 and SS-4 are unsafe under partially and completely saturated (natural slope) condition. In average slope condition, all the SS sections are unsafe under partially or completely saturated conditions. The facets 2, 3, 4, and 5 required mitigation measures, to improve the stability of slopes. Site-specific mitigation measures were suggested for partially or completely unstable rock and soil cut slopes.  相似文献   

7.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   

8.
修正SMR法在红层软岩边坡中的应用   总被引:2,自引:1,他引:1  
邱恩喜  谢强  石岳  赵文 《岩土力学》2009,30(7):2109-2113
在前人大量研究的基础上,针对传统的SMR法(边坡岩体质量方法)没有考虑软弱互层对边坡岩体评价结果的影响的不足之处,增加了强度差异调整权值项。对西南地区80个红层软岩边坡的评价分析结果表明,采用岩性差异修正后的SMR法比直接使用SMR法更加符合野外实际情况,运用修正后的SMR法对红层软岩边坡评价更加合理。  相似文献   

9.
Stability conditions in an area located NW of Barcelona (Spain) are discussed. Here, several mass movements were observed, mainly affecting weathered Paleozoic slates. Many of these failures involved slopes cut along recent infrastructures: debris flows, wedge and plane failures, generally surficial, occurred more frequently. After a detailed geological and geomorphologic survey, geomechanic characterization was carried out, according to RMR and SMR classifications. This rating gave a prediction of slope behaviour, in fairly good agreement with the real observed one.

Stability numerical analysis was carried out for the main cut slopes, based upon the Limit Equilibrium Method. First of all, the deterministic factor of safety was computed using the mean values of parameters. After that, a simulation technique based upon the Monte Carlo Method was applied in order to obtain factor of safety distributions. The probability of failure was estimated as P(F<1).

Finally, results from deterministic and probabilistic approaches were compared. The effectiveness of different possible remedial measures was highlighted by means of a sensitivity analysis, which showed that the more important parameters in the study area are the geometrical ones (height, slope and failure plane angles). The final technical solutions adopted are briefly outlined.  相似文献   


10.
改进的水电边坡岩体稳定性分级法   总被引:2,自引:1,他引:1       下载免费PDF全文
为克服现有基于边坡岩体分级SMR法的修正分级法存在的缺陷,采用较为合理的修正模型,结合36个水电工程边坡,提出了改进的水电边坡岩体分级M-CSMR法。该法使用边坡类型系数替代开挖修正得分,同时考虑了开挖、水流冲刷及掏蚀作用的影响;将坡高对边坡岩体稳定性的影响引入分级中,给出坡高分级及评分原则;对SMR法中各指标权值重新进行调整。与岩体分级RMR法、边坡岩体分级SMR法及水电边坡岩体分级CSMR法进行了比较,结果表明M-CSMR分级法与经验评分最为接近,预测结果最好,最大绝对误差、平均绝对误差及剩余标准差均最小,因此M-CSMR是一种更优的水电边坡岩体分级方法。  相似文献   

11.
Several deformation phases in tectonically active Himalayas have rendered the rock masses very complex in terms of structure, lithology and degree of metamorphism. Again, anthropogenic activities such as roads, tunnels and other civil engineering constructions have led to a state of disequilibrium which in many cases, results in failure of rock masses. National Highway-05 around Jhakri area in India is a major connecting route to the China border in the hilly terrains of the state Himachal Pradesh. It cuts through the Himalayan rocks and has a hazardous history of landslides destroying human lives and interrupting communication very frequently. As a contribution towards the mitigation process, a study has been carried out along the highway to analyse kinematic stability and qualitative estimation of rock mass condition through rock mass classification systems. The kinematic analysis shows that the rock slopes are prone to planar and wedge failure. Rock mass rating for most of the locations lies between 7 and 34, representing a poor rock mass quality (Class IV), whereas slope mass rating is more disperse and ranges from 11 to 52 for most of the slopes (Class III, IV and V).  相似文献   

12.
Landslides and slope failures are recurrent phenomena in the Indian Himalayas. The study area comprises the hill slopes along a road stretch of 1.5 km at a distance of 9 km from Pipalkoti on Chamoli–Badrinath highway (NH-58) in the Garhwal Himalayas, India. Based on the field survey, contour map, and the hillshade, the study area has been divided into different zones. Three different zones/slopes in this study area including one potential debris slide, one stable debris slope, and one potential rock slide have been undertaken for investigation and modeling. Field mapping, data collection related to slope features and soil/rock sample collection, and discontinuity mapping for all the slopes have been carried out in field. Soil samples have been tested in the laboratory to determine the physico-mechanical properties. These properties along with some material properties from the literature have been used as input parameters for the numerical simulation. To investigate the failure process in the debris/rock slides as well as stable debris slope, the slopes were modeled as a continuum using 2D finite element plain strain approach. Shear strength reduction analysis was performed to determine the critical strength reduction factor. The computed deformations and the stress distributions, along the failure surface, have been compared with the field observations and found to be in good agreement. The analysis results indicated rock/debris slide slopes to be highly unstable. The debris slide modeling depicted failures both above and below road levels as observed in field. The rock slide modeling could depict the exact pattern of failure involving 3 sets of discontinuities simultaneously as observed in real-field scenario which is a major limitation in case of limit equilibrium analysis. The field-observed stable slope comes to be stable through FE analysis also. Based on these analyses, landslide hazard assessment of the study area could be done.  相似文献   

13.
汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律   总被引:22,自引:4,他引:18  
512汶川大地震造成大量的次生斜坡灾害,本次研究区域为汶川大地震的11个重灾区,包括汶川、北川、青川、安县、平武、茂县、江油、彭州、什邡、绵竹、理县等市县。通过对重灾区航片、卫片、雷达图像的解译研究发现,重灾区次生斜坡灾害的主要灾种表现为崩塌、滑坡以及崩塌、滑坡高速运动解体形成的碎屑流(个别地方由于水的参与表现为泥石流)以及它们堵江形成的堰塞湖。研究发现地震次生斜坡灾害的发育具有明显的丛集性规律。从区域上看,次生斜坡灾害明显呈带状,沿龙门山断裂带展布,并主要受北川映秀断裂控制。各灾种的发育在不同地段发育的规模、频率差别较大。以灾害分布面积来排序,汶川县灾害面积最大,为131.55km2,其次为北川县,为45.57km2,其余9个县(市)灾害面积相差不大,均介于6~17km2,其中理县灾害面积最小,为6.25km2。各灾种的发育在不同地段发育的规模、频率差别较大。青川县、平武县灾种主要为滑坡,汶川县、茂县、安县、理县灾种主要表现崩塌转化的碎屑流,北川的主要灾种则为碎屑流,其次为滑坡,什邡、彭州、绵竹、江油等地主要灾种为崩塌。 灾种发育的这种地域性差别主要受控于地层岩性,除此而外,还与构造特征、地形地貌等因素紧密相关。研究表明:岩性对灾害种类的展布有决定性控制作用。统计发现,岩性越坚硬,崩塌、碎屑流发育率越高,滑坡则在软岩地区、较软岩地区和较坚硬区发育率最高,泥石流则在软岩地区最为发育。地形地貌对次生斜坡灾害的发育有重要影响,统计表明,崩塌、碎屑流以及泥石流在1200~2000m坡段范围内发育率最高,其次为800~1200m坡段;而滑坡则在800~1200m坡段范围发育率最高。对坡度而言,除11~20坡度范围外,崩塌和碎屑流的发育率总体具有随坡度增高而增大的特点;而滑坡和泥石流的发育率呈现典型的单峰特征,在1~20范围内发育率最大。坡向对地震次生斜坡灾害的发育影响不明显。 地震次生斜坡灾害的发育规律表明,地震斜坡灾害的发生主要受控于活动构造本身,并沿活动构造呈带状展布,同时受场地条件如岩性、地形地貌等因素的强烈控制。  相似文献   

14.
The slopes of western Lesser Himalaya (at Sangaldhan Block of Udhampur near Ramban, Jammu and Kashmir India) are being severely affected by tectonic and erosional activities. These activities result in deposit of a thick cover of rock fragments and overburden just above the hard rock. The thickness of overburden cover has directly affected the stability of slope in the study area, though the traditional stability estimation techniques, rock mass rating and slope mass rating, rate this area as moderately stable which does not represent the real stability condition. In this research work, the geotechnical and geophysical surveys have been carried out to reckon the slope stability conditions more accurately as compared to traditional slope stability estimation techniques. A new rating, new slope mass rating, is developed, which gives a better picture of the stability of slopes. It incorporates a new parameter of overburden thickness profile, along with slope angle and other associated factors on the slopes of the mountainous terrains. The vertical electrical sounding surveys were conducted for the demarcation of rock–overburden interface and for determining the overburden cover. This new classification depicts an increase of 12.84 % in unstable slope areas giving a better assessment and factual picture of slope stability in our study area. This study also enumerates the importance of geophysical applications in slope stability studies. The research work is applicable in mountainous terrains such as Himalaya, and the major component of the application is the orientation of overburden or the profile of thickness in relation with slope of surface.  相似文献   

15.
This study evaluates slope stability of 19km stretch Bodimettu ghat section, Theni,Tamil Nadu. The study involves 107.8km to 117.5km stretch by dividing it into two zones - Kaththuparai and Bodimettu slope. These two sections are considered for slope stability studies. In this study, analysis of the rock slope stability was performed using Modified SMR technique. Hoek and Bray (1981) analysis have been used for rock cut slopes. 12 rock slopes were identified in Kaththuparai section and four slopes in Bodimettu section. The detailed field investigations were carried out to collect data required for RMR and SMR calculation and SMR was calculated for each section. As per Hoek and Bray (1981) stereographic projection methods, FOS was calculated. In this study, sections R1 and R2 fulfill wedge conditions and R1, R2, R5, R7, R9, R10, R11, R12, R13, R14 and R16 are suitable for planar and stereographic analysis. The details are furnished in this paper. The planar analysis shows that, FOS for the sections R2/J2, R5, R9, R10, and R11/J3 was < 1, and stereographic projection study shows that sections R2, R5, R7, R9, R10, R11/J3 and R13 are present in unstable zone.  相似文献   

16.
The present study was conducted along the Mugling–Narayanghat road section and its surrounding region that is most affected by landslide and related mass-movement phenomena. The main rock types in the study area are limestone, dolomite, slate, phyllite, quartzite and amphibolites of Lesser Himalaya, sandstone, mudstone and conglomerates of Siwaliks and Holocene Deposits. Due to the important role of geology and rock weathering in the instabilities, an attempt has been made to understand the relationship between these phenomena. Consequently, landslides of the road section and its surrounding region have been assessed using remote sensing, Geographical information systems and multiple field visits. A landslide inventory map was prepared and comprising 275 landslides. Nine landslides representing the whole area were selected for detailed studies. Field surveys, integrated with laboratory tests, were used as the main criteria for determining the weathering zones in the landslide area. From the overall study, it is seen that large and complex landslides are related to deep rock weathering followed by the intervention of geological structures as faults, joints and fractures. Rotational types of landslides are observed in highly weathered rocks, where the dip direction of the foliation plane together with the rock weathering plays a principle role. Shallow landslides are developed in the slope covered by residual soil or colluviums. The rock is rather fresh below these covers. Some shallow landslides (rock topples) are related to the attitude of the foliation plane and are generally observed in fresh rocks. Debris slides and debris flows occur in colluviums or residual soil-covered slopes. In few instances, they are also related to the rock fall occurring at higher slopes. The materials from the rock fall are mixed with the colluviums and other materials lying on the slope downhill and flow as debris flow. Rock falls are mainly related to the joint pattern and the slope angle. They are found in less-weathered rocks. From all these, it is concluded that the rock weathering followed by geological structures has prominent role in the rock slope instability along Mugling–Narayanghat road section and its surrounding regions.  相似文献   

17.
2010年7月27日凌晨4时许,四川省汉源县万工乡二蛮山发生大规模滑坡,约48×104m3的强风化玄武岩体,在前期降雨的影响下高位高速滑出,随即解体转化为碎屑流,沿沟谷高速运动,沿途不断携卷和铲刮堆积于沟床及两侧斜坡的表层松散物质,使滑体的体积和含水量不断增大。当运动到沟谷中段时,因沟道在此向右偏转,在强大的惯性力作用下,部分碎屑流体冲向左岸斜坡,将居住于此的双合村一组5户村民房屋掩埋,造成20人失踪;另一部分碎屑流体继续沿沟谷高速运动近1.4km才最终停止。约30m in后,堆积于沟谷中段深切沟道内的滑坡堆积物,在重力作用下再次启动,形成二次滑坡。二次滑坡缓慢蠕滑流动数小时,最终到达万工新集镇,将部分房屋推倒掩埋,造成92户房屋受损、1500人被迫紧急转移。本文在对灾害现场进行详细地质调查的基础上,结合现场测绘、颗分试验、航拍等手段,对二蛮山滑坡体的基本特征进行了较深入的调查研究,对滑坡发生及成灾原因进行了初步分析。结果表明,滑源区相对突出的地形条件、风化破碎的玄武岩体和有利的结构面组合是滑坡发生的基本条件;前期降雨期间爆发的泥石流对滑源区坡脚的掏蚀、强降雨的饱水加载作用以及雨水沿陡倾张裂结构面的下渗软化作用,是诱发滑坡发生的直接原因。二蛮山沟谷原为一高频泥石流沟,滑坡发生前并无明显的滑坡迹象,滑坡的发生表现出极强的隐蔽性和突发性以及高位高速远程运动和危害巨大的特点,同时,主滑坡发生后在短时间内滑坡区再次启动发生二次滑坡,这些现象和特点具有特殊性,也具有典型性,值得深入研究。  相似文献   

18.
There are many rock mass classification schemes which are frequently used for different purposes such as estimation of strength and deformability of rock masses, stability assessment of rock slopes, tunneling and underground mining operations etc. The rock mass classification includes some inputs obtained from intact rock and discontinuity properties which have major influence on assessment of engineering behaviour of rock mass. In the present study, detail measurements were employed on road cuts slope faces in Garhwal Himalayas to collect required data to be used for rock mass classification of Rock Mass Rating (RMR) and Geological Strength Index (GSI). The stability assessment of rock slopes were also done by using Slope Mass Rating. In addition the relation between RMR and GSI were also evaluated using 50 data pairs.  相似文献   

19.
The present paper demonstrates the assessment of slope stability analysis between Rampur to Jhakri road section along National Highway (NH-22), Himachal Pradesh, India. The different types of slope failures have affected most part of slopes which causes considerable loss of life and property, inconveniences such as disruption of traffic along highways. The poorly designed rock slopes for road widening or construction purposes may weaken the stability of the slopes. A detail field investigation has been carried out to collect the representative rock samples for determination of physico-mechanical properties of rock and joint data for kinematic analysis. The rocks exposed in the area are highly jointed quartzite and quartz-mica schist of Rampur-Larji Group of Palaeoproterozoic age. The continuous slope mass rating (CSMR) technique has been applied for the assessment of slope stability analysis at five vulnerable locations and the results shows slopes are partially stable to unstable. Kinematic analysis mainly shows wedge type of failure along with few toppling and planar failures. The existing slope required immediate treatment to prevent the failure for its long term stability.  相似文献   

20.
Stability of slopes in a fire-prone mine in Jharia Coalfield, India   总被引:2,自引:0,他引:2  
Stability of slope in an opencast mine is always associated with safety and economics. The steeper slope is always preferred from economic point of view but prone to failure, whereas flatter slopes are uneconomical. A proper understanding of slope which will be a steep enough to be stable is required for safety, economy, and stability of men and machineries. The Rajapur opencast mine is one of the important mines in terms of good quality coal but has problems of water seepage, fire, and weak overburden materials. The existing coal mine has three working seams which are mostly thick and occur at shallow depths of about 50–60 m. Overall slope angle of the working faces as well as final pit is very steep which leads to failures. In the present paper, an attempt has been made to characterize the materials of the mine for simulation of existing slopes. The rock samples from the coal measures were collected to determine the petrophysical characteristics of various rock units. All the pertinent geological parameters from the exposed face were also collected during field visit to assess the slope mass rating (SMR). A two-dimensional finite difference tool was employed to simulate the existing slope geometry as well as relevant parameters of the rock units. The numerical simulation indicates various vulnerable points which are prone to failure as well as displacements at various points along the slope. The results of simulations are corroborated with the SMR value. The results are well matching with the field condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号