首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arecibo S-band () radar observations of Comet C/2001 A2 (LINEAR) on 2001 July 7-9 showed a strong echo from large coma grains. This echo was significantly depolarized. This is the first firm detection of depolarization in a grain-coma radar echo and indicates that the largest grains are at least λ/2π or 2 cm in radius. The grains are moving at tens of m s−1 with respect to the nucleus. The nondetection of the nucleus places an upper limit of 3 km on its diameter. The broad, asymmetric echo power spectrum suggests a fan of grains that have a steep (differential number ∼a−4) size distribution at cm-scales, though the observed fragmentation of this comet complicates that picture.  相似文献   

2.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.  相似文献   

3.
We present new, near-aphelion, time series of photometry of Comet 2P/Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0=11.079±0.009 h or 2P0=22.158±0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and “WindowCLEAN” techniques. At both epochs and with both techniques strong periodicities were found near frequencies and . By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both.  相似文献   

4.
Comet Hale-Bopp was imaged at wavelengths from 1.87 to 2.22 μm by HST/NICMOS in post-perihelion observations starting on UT 1997 August 27.95. Diffraction-limited (∼02) images were obtained at high signal-to-noise (∼1500) to probe the composition and dynamics of the inner coma and also the size and activity of the nucleus. The velocities of several unusual morphological features over a 1.7 h period, indicate that a significant outburst occurred 7.4 h prior to these images while the comet was at a heliocentric distance of 2.49 AU. Similar features are also apparent after re-analysis of pre-perihelion ground-based images. The inner coma (radius ?2500 km) is dominated by an “arc” feature, which expanded and became more diffuse with time. This feature can be modeled as the bright central portion of a “jet of outburst” from a near-equatorial region of the nucleus. Less prominent, time-variable linear and circular morphologies are also apparent. The expansion rates of both the arc feature and the circular morphologies imply a common origin and also suggest a grain size distribution with two broad maxima. In addition, several static linear features extend to the edge of the field of view (21,100 km). Radial brightness profiles are highly asymmetric and only approach a ρ−1 decline at distances ?15,000 km. Images in a narrow-band filter at 2.04 μm exhibit a ∼4% absorption feature relative to nearly simultaneous images at wavelengths of 2.22, 1.90, and 1.87 μm. This absorption is attributed to H2O ice in the coma grains. The spatial distribution and expansion velocity of the absorption at 2.04 μm indicate that these grains are associated with the outburst. The constancy of the absorption feature indicates no appreciable sublimation over 1.7 h. The unresolved nucleus has a flux density consistent with a 40±10 km diameter assuming a 4% geometric albedo.  相似文献   

5.
Comet 1996 B2 (Hyakutake) displayed strong evidence for break-up, with a prominent antisunward dust spike and fragments traveling antisunward for many days after an eruptive event in late March 1996. Because of its high orbital inclination and rapid southward motion after perihelion, its post-perihelion activity was not well monitored from the ground. The SWAN all-sky Lyman-alpha camera on the SOHO spacecraft was ideally placed for long-term monitoring of the hydrogen coma of Comet Hyakutake both before and after perihelion. The SWAN images were analyzed with a new time-resolved model (TRM) that provides daily averages of the water production rate and an estimate of the hydrogen atom lifetime (dominated by charge exchange with solar wind protons) during extended periods throughout the apparition. A long-term variation of water production rate of , where r is the heliocentric distance in AU was found. The daily average values of the production rate covered the March 19 outburst and two more outbursts seen in the April before perihelion, which had progressively shorter durations at respectively smaller heliocentric distances. The long-term variation of the production rate was found to be consistent with the seasonal effect predicted by the jet rotation model of Schleicher and Woodney [2003. Analyses of dust coma morphology of Comet Hyakutake (1996 B2) near perigee: Outburst behavior, jet motion, source region locations, and the nucleus pole orientation. Icarus 162, 190-213] when added to a more steady source that is about two-thirds of the maximum of the jet source. The seasonal effect in their model found the dust jet source largely not illuminated after perihelion, coinciding with somewhat reduced overall activity and the absence of outbursts and fragmentation. The locations of the dust jets appear to be responsible for the outbursts and fragmentation before perihelion. The erratic behavior of the pre-perihelion jet sources as contrasted with the smoother variation from the rest of the surface after perihelion indicates there is a strong heterogeneity in the physical make-up of active areas on the nucleus.  相似文献   

6.
We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b?1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (VR)=0.39±0.06 and (BV)=0.73±0.06 (). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ∼11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., Meech, K.J., 2005. Icarus 175, 194-214]—taken just 2-3 weeks before the current data set—and we show that a rotation period of just over 11 h works extremely well for the combined data set. The resulting best-fit period is 11.083±0.003 h, consistent with the Fernández et al. value.  相似文献   

7.
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 110-101 ortho-water ground-state rotational transition in Comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8×107 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with alternated with periods with low outgassing (). We estimate that 9P/Tempel 1 vaporized a total of N∼4.5×1034 water molecules (∼1.3×109 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates.  相似文献   

8.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

9.
The Wide Field Camera (WFC) on the Hubble Space Telescope and the Low Resolution Imaging Spectrograph (LRIS) on the Keck II telescope have been used to image 21 distant dynamically new, long-period (LP) and short-period (SP) Jupiter-family (JF) comet nuclei (near aphelion), as part of a long-term program to search for physical differences between short-period comets and Oort cloud comets. WFC data were obtained on Comets C/1987 H1 (Shoemaker) and C/1984 K1 (Shoemaker) during Cycle 5 (1995 December) and on C/1988 B1 (Shoemaker), C/1987 F1 (Torres), and C/1983 O1 (?ernis) during Cycle 6 (1997 April, May, and June). The HST comets were at heliocentric distances 20.4 < r[AU] < 29.5. Each comet observation was allocated 7 orbits, for ≈3.6 hrs of integration. The most difficult part of the image reduction was the removal of cosmic rays. We present our scheme for cosmic ray removal. None of the HST comet nuclei was detected to the 3-σ level at mR∼27. The inferred upper limits to the nucleus radii are . The SP comets range in radius between , with a median value of RN∼1.61 km. The LP comets ranged in size between <4.0-56 km. Over a range of radii between 1-10 km, the nuclei can be fit with a cumulative distribution N(>RN)∝RNα with α=1.45±0.05, and for nuclei in the range 2-5 km, α=1.91±0.06. Statistical analysis and modeling shows that the slopes of the observed TNO and JF comet distributions are not compatible, suggesting that the intrinsic distribution of JF comet nuclei is a differential a−3.5 power law truncated at small nucleus radii between 0.3 and 2.0 km.  相似文献   

10.
The results of the multiaperture photometry of Comet Shoemaker-Levy 1991 T2 in the pre-perihelion and P/deVico in the post-perihelion period with the narrowband CN, C2 and Blue Continuum (BC) IHW filters are presented. A Haser model of the molecular coma was used for the determination of the parent and daughter scale-lengths and production rates of the radicals. The comets showed some substantial differences between their parent scale-lengths. The CN parent scale-length (at 1.0 AU) was 16×103 km for Comet Shoemaker-Levy and 39×103 for P/deVico, the C2 parent scale-lengths were respectively 29×103 and 54×103 km. Such divergences could be interpreted in the frame of different scenarios of emission of cometary parents, either from a nucleus or from a volume source. The daughter scale-lengths for these comets were quite similar, namely: 306×103 and 318×103 km for CN and 69×103 and 66×103 km for C2. We determined the Afρ parameter for apertures of different radii. A Monte Carlo model of the dust coma was used to obtain the dust ejection velocity. It was of the order of 0.1 km s−1 for both comets. The power index of the distribution of the β-parameter of dust particles (ratio of light pressure to the solar gravitation) was of the order of 3 for C/Shoemaker-Levy and close to 2 for P/deVico. The dependence on heliocentric distance (rh) of the radical and dust production rates for P/deVico in the range of 0.7-1.0 AU was described by the power law function with a power index equal to: 5.55±0.14 for CN, 5.70±0.24 for C2 and 5.22±0.19 for dust. Relative abundances of the dynamically new Comet Shoemaker-Levy and short-period P/deVico were quite similar with an enhancement of C2 comparing with standard values taken from A'Hearn et al. (1995).  相似文献   

11.
Comet P/Halley has been observed during its approach to perihelion at heliocentric distancesR = 11.0 AU and R = 8.2 AU. No extended coma is seen and limits can be placed on the fraction of the total light contributed by coma. The brightness of the comet varies on a short time scale. The variations may be due to transient activity or to rotation of the irregular nucleus.  相似文献   

12.
13.
I. Toth  P. Lamy 《Icarus》2005,178(1):235-247
The investigation of fragmented comets provides information on the physical properties and internal structure of cometary nuclei, as well as insights into the mechanisms responsible for cometary breakups. The Jupiter-family Comet 73P/Schwassmann-Wachmann 3 (73P/SW3) fragmented non-tidally into at least four components, and probably more, in the autumn of 1995. Fragment C was detected with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST) on 26 November 2001 when it was 3.26 AU from the Sun and 2.34 AU from the Earth. The high spatial resolution of the HST allowed us to separate the signal of the fragment from that of its coma, and to determine its R magnitude in the Johnson-Kron-Cousins photometric system from four images taken with the F675W filter. Assuming a spherical body with a geometric albedo of 0.04 and a linear phase coefficient of 0.04 mag deg−1 for the R band, we derived an effective radius of . The pre-breakup radius of the original nucleus was estimated to be 1.1 km, which implies that the volume of fragment C is ∼25% of the total volume of the pre-breakup nucleus. The limited temporal coverage of our observations preclude deriving an accurate shape or rotational period; our measurements are consistent with a rather spherical body but an elongated shape cannot be excluded. Fragment C was very active despite its rather large heliocentric distance, with an estimated dust production rate of (∼130 metric tons day−1). A very large fraction of the surface area of fragment C must have been sublimating to sustain such a high level of activity. Fragment C may be recovered at its next return in 2006, if it does not experience further fragmentation.  相似文献   

14.
An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet’s coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet’s dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet’s orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet’s orbit remains nearly parabolic after passing the orbits of all the Solar System planets.  相似文献   

15.
We present mid-infrared spectra and images from the Gemini-N (+MICHELLE) observational campaign of Comet 9P/Tempel 1 before, during, and after its encounter with Deep Impact. We use our thermal grain model to probe the 10 μm properties of the dust grains in the coma of the comet. Before impact (3 July 2005 UT), and more than 24 h after impact (5, 16, and 28 July 2005 UT), the comet dust grains were composed mostly of amorphous olivine, and were relatively large (peak of the grain size distribution ). For the night of impact, we extract spectra by centering on the nucleus, and offset 1″ from the nucleus in the direction of the impact ejecta plume. We find small dust grains (∼0.2 μm) of a diverse mineralogy (amorphous olivine, amorphous pyroxene, amorphous carbon, and crystalline olivine) populating the ejecta. The submicron sized dust grains move faster than the other, larger grains (?0.7 μm), with amorphous olivine and amorphous carbon traveling together, and amorphous pyroxene and crystalline olivine dispersing at a similar rate. Deriving a velocity law from a time-of-flight analysis, we find that the material traveled with a velocity law scaled by and with a power of p=0.5. This velocity power-law requires a sustained release of grains for the duration of 45-60 min after impact. Since the mineral species are traveling at different speeds, and there was a sustained release of grains due to a possible “gas-plume,” we conclude that the different minerals did not originate from grain aggregates destroyed by the impact, but instead arise from an inhomogeneous nucleus.  相似文献   

16.
17.
The variations in production rates for Comet 46P/Wirtanen for the species H2O and the parents of C2 and CN are examined from the point of view of a variety of commonly used scale lengths. The calculations are carried out as a function of heliocentric distance. It is shown that, by using a common set of scale lengths, the results of various investigators can be brought into acceptable accord. The resulting production rates of H2O and the parents of C2 and CN versus heliocentric distance are recalculated and plotted versus the heliocentric distance rH. The curves show reasonable agreement with a slope of ∼rH−4. The water production rate near perihelion of 46P/Wirtanen is close to .  相似文献   

18.
The nucleus of Comet 9P/Tempel 1 was first observed with the Hubble Space Telescope (HST) in December 1997 [Lamy, P., Toth, I., A'Hearn, M.F., Weaver, H., Weissman, P.R., 2001. Icarus 154, 337-344], but the temporal coverage was insufficient to determine its rotational period. Because the success of the Deep Impact mission was critically dependent on understanding the rotational state and approximate shape and size of the nucleus, we extensively re-observed 9P/Tempel 1, this time with the Advanced Camera for Surveys (HST/ACS), from May 7.9 to 9.5, 2004 (UT). At the mid-point of the observing window, the comet was 3.52 AU from the Sun, 4.03 AU from the Earth, and at a solar phase angle of 13.3°. The program was comprised of 18 separate visits, each one corresponding to an HST orbit filled with 3 ACS exposures of either 800 or 857 s duration with the F606W broadband filter. These very deep exposures revealed a star-like object, without any apparent coma. The light curve, defined by 49 data points, is characterized by a mean apparent V magnitude of 21.8 and an amplitude of 0.5 mag, indicating that we were viewing the varying cross-section of a rotating, elongated body. The periodicity was analyzed with seven different techniques yielding a rotational period in the range 39.40 to 43.00 h, and a mean value of 41.27±1.85 h (1σ). Using an albedo pV=0.04 and a linear phase law with a coefficient , we determined an effective radius of 3.01 km; a possible prolate spheroid solution has semi-axes a=3.71 km, b=2.36 km and a minimum axial ratio a/b∼1.57. By comparing the light curves obtained in 1997 and in 2004, we were able to constrain the phase function of the nucleus. Finally, an upper limit of Afρ<0.04 cm is set based on the non-detection of the coma.  相似文献   

19.
David G. Schleicher 《Icarus》2006,181(2):442-457
We present compositional and physical results of Comet 67P/Churyumov-Gerasimenko, the new target of ESA's Rosetta mission. A total of 16 nights of narrowband photometry were obtained at Lowell Observatory during the 1982/83 and 1995/96 apparitions, along with one night of imaging near perihelion in 1996. These data encompass an interval of −61 to +118 days from perihelion, corresponding to a range of heliocentric distances before perihelion from 1.48 to 1.34 AU, and an outbound range from 1.30 to 1.86 AU. Production rates were determined for OH, NH, CN, C3, and C2, along with A(θ)fρ, a proxy of the dust production. Water production, based on OH, has a steep () power-law rH-dependence post-perihelion and the minor species are somewhat less steep ( to −4), while the dust is quite shallow (), possibly due to a lingering population of large, slow-moving grains. All species exhibit larger production rates after perihelion, with water having a ∼2×pre/post-perihelion asymmetry, while minor species and dust have larger asymmetries. These asymmetries imply a strong seasonal effect and probable high obliquity of the rotational axis, along with one or more isolated source regions coming into sunlight near perihelion. Peak water production (which occurred about 1 month after perihelion) was and, when combined with a standard water vaporization model, implies an effective active area on the surface of the nucleus of ∼1.5-2.2 km2 or an active fraction of only about 3-4%. Abundances of carbon-chain molecules yield a classification of slightly “depleted” in the A'Hearn et al. [A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V., 1995. Icarus 118, 223-270] database. The peak dust production (as measured by A(θ)fρ, and uncorrected for phase angle) was ∼450 cm, while the color of the dust is moderately reddened, and the mean radial profile has a power-law slope of −1.3. Large night-to-night variability is also present, presumably due to the source region(s) rotating in and out of sunlight along with effects due to the use of differently sized apertures. A strong sunward radial feature was detected in images obtained near perihelion, along with a significant asymmetry between the two perpendicular directions from the Sun/tail line. These features may be the result of a mid-latitude source region sweeping out a cone with each rotation, which we are viewing from the side and where the sunward radial feature is one edge of the cone seen in projection. When combined with other constraints on the pole orientation, a possible pole solution is found having an obliquity of about 134° at an RA of about 223° and a Dec of −65°, with a source region located near +50° and in overall agreement with the photometric results. In comparison to the original Rosetta target Comet 46P/Wirtanen, Comet Churyumov-Gerasimenko has essentially the same peak water production but a peak dust production about 3 times greater than does Wirtanen based on A(θ)fρ (i.e., if one assumes that the properties of the dust grains are similar) (cf. Farnham and Schleicher [1998. Astron. Astrophys. 335, L50-L55]).  相似文献   

20.
We present a synthetic analysis of all available infrared (2-20 μm) and radio (1.3-6.1 cm) observations of comet C/1983 H1 IRAS-Araki-Alcock performed during its close approach to Earth in May 1983. We implement a model based on a spherical nucleus with a macroscopic mosaic of small and numerous active and inactive regions, and take into account the strong phase effect in the calculations of the thermal flux (often neglected in past interpretations). The orientation of the spin axis is assumed to be that determined by Sekanina [1988. Astron. J. 95, 1876-1894]. Additional constraints coming from visible photometry, measurements of the water production rate and the temporal variations of the cometary activity are introduced. We derive an equivalent nucleus radius of 3.4±0.5 km, consistent with a geometric albedo of 0.04 ±0.01 and a phase coefficient in the visible, and an active fraction of 2.9 ±1.9%. Although the nucleus is probably elongated as found in the past (Sekanina, 1988), we show that the relevant measurements were likely contaminated by the contribution of a variable coma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号