首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A model study of turbidity maxima in the York River estuary,Virginia   总被引:2,自引:0,他引:2  
A three-dimensional numerical model is used to investigate the mechanisms that contribute to the formation of the turbidity maxima in the York River, Virginia (U.S.). The model reproduces the basic features in both salinity and total suspended sediments (TSS) fields for three different patterns. Both the prominent estuary turbidity maximum (ETM) and the newly discovered secondary turbidity maximum (STM) are simulated when river discharge is relatively low. At higher river inflow, the two turbidity maxima move closer to each other. During very high river discharge event, only the prominent turbidity maximum is simulated. Diagnostic model studies also suggest that bottom resuspension is an important source of TSS in both the ETM and the STM, and confirm the observed association between the turbidity maxima and the stratification patterns in the York River estuary. The ETM is usually located near the head of salt intrusion and the STM is often associated with a transition zone between upriver well mixed and downriver more stratified water columns. Analysis of the model results from the diagnostic studies indicates that the location of the ETM is well associated with the null point of bottom residual flow. Convergent bottom residual flow, as well as tidal asymmetry, is the most important mechanisms that contribute to the formation of the STM. the STM often exists in a region with landward decrease of bottom residual flow and net landward sediment flux due to tidal asymmetry. The channel depth of this region usually decreases sharply upriver. As channel depth decreases, vertical mixing increases and hence the water column is better mixed landward of the STM.  相似文献   

2.
A three-dimensional (3-D) suspended sediment model was coupled with a 3-D hydrodynamic numerical model and used to examine the spatial and temporal distribution of suspended sediments in the Satilla River estuary of Georgia. The hydrodynamic model was a modified ECOM-si model with inclusion of the flooding-drying cycle over intertidal salt marshes. The suspended sediment model consisted of a simple passive tracer equation with inclusion of sinking, resuspension, and sedimentation processes. The coupled model was driven by tidal forcing at the open boundary over the inner shelf of the South Atlantic Bight and real-time river discharge at the upstream end of the estuary, with a uniform initial distribution of total suspended sediment (TSS). The initial conditions for salinity were specified using observations taken along the estuary. The coupled model provided a reasonable simulation of both the spatial and temporal distributions of observed TSS concentration. Model-predicted TSS concentrations varied over a tidal cycle; they were highest at maximum flood and ebb tidal phases and lowest at slack tides. Model-guided process studies suggest that the spatial distribution of TSS concentration in the Satilla River estuary is controlled by a complex nonlinear physical process associated with the convergence and divergence of residual flow, a non-uniform along-estuary distribution of bottom stress, and the inertial effects of a curved shoreline.  相似文献   

3.
现场试验表明,三角架观测系统稳定性良好,获取了边界层内多层位、连续的温、盐、流速、浊度同步观测数据,适用于浅海近底部沉积动力过程高分辨率观测及物质输运研究。观测结果显示:观测期间,边界层内存在向陆的余流,并呈现逐渐减小的趋势,其主要由涨、落潮流的不对称造成,大风天气和密度环流亦是影响余流强弱的重要因素;观测期间多数时刻底部切应力大于起动切应力,底质沉积物可产生明显的搬运甚至再悬浮;悬沙浓度对沉积动力的响应在涨、落潮,大、小潮阶段均有各自的特点,水动力的变化、潮流加/减速时间的长短、床面泥沙的供应量、上部水体泥沙的沉降是导致悬沙浓度变化的主要原因;底部边界层内,涨、落潮期间不对称输沙导致潮周期内悬沙净向河口湾内输运。  相似文献   

4.
Hughes  Harris  & Hubble 《Sedimentology》1998,45(2):397-410
Bed sediment, velocity and turbidity data are presented from a large (145 km long), generally well-mixed, micro-tidal estuary in south-eastern Australia. The percentage of mud in the bed sediments reaches a maximum in a relatively narrow zone centred ≈30–40 km from the estuary mouth. Regular tidal resuspension of these bed sediments produces a turbidity maximum (TM) zone in the same location. The maximum recorded depth-averaged turbidity was 90 FTU and the maximum near-bed turbidity was 228 FTU. These values correspond to suspended particulate matter (SPM) concentrations of roughly 86 and 219 mg l?1, respectively. Neither of the two existing theories that describe the development and location of the TM zone in the extensively studied meso- and macro-tidal estuaries of northern Europe (namely, gravitational circulation and tidal asymmetry) provide a complete explanation for the location of the TM zone in the Hawkesbury River. Two important factors distinguish the Hawkesbury from these other estuaries: (1) the fresh water discharge rate and supply of sediment to the estuary head is very low for most of the time, and (2) suspension concentrations derived from tidal stirring of the bed sediments are comparatively low. The first factor means that sediment delivery to the estuary is largely restricted to short-lived, large-magnitude, fluvial flood events. During these events the estuary becomes partially mixed and it is hypothesized that the resulting gravitational circulation focuses mud deposition at the flood-determined salt intrusion limit (some 35 km seaward of the typical salt intrusion limit). The second factor means that easily entrained high concentration suspensions (or fluid muds), typical of meso- and macro-tidal estuaries, are absent. Maintenance of the TM zone during low-flow periods is due to an erosion-lag process, together with a local divergence in tidal velocity residuals, which prevent the TM zone from becoming diffused along the estuary axis.  相似文献   

5.
A three-dimensional, time-dependent hydrodynamic and suspended sediment transport model was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model was validated with observed time-series salinity in 2001, and with salinity and suspended sediment distributions in 2002. The predicted results quantitatively agreed with the measured data. A local turbidity maximum was found in the bottom water of the Kuan-Du station. The validated model then was conducted with no salinity gradient, no sediment supply from the sediment bed, wind stress, and different freshwater discharges from upstream boundaries to comprehend the influences on suspended sediment dynamics in the Danshuei River estuarine system. The results reveal that concentrations of the turbidity maximum simulated without salinity gradient are higher than those of the turbidity maximum simulated with salinity gradient at the Kuan-Du station. Without bottom resuspension process, the estuarine turbidity maximum zone at the Kuan-Du station vanishes. This suggests that bottom sediment resuspension is a very important sediment source to the formation of estuarine turbidity maximum. The wind stress with northeast and southwest directions may contribute to decrease the suspended sediment concentration. When the freshwater discharges increase at the upstream boundaries, the limits of salt intrusion pushes downriver toward river mouth. Suspended sediment concentrations increase at the upriver reaches in the Danshuei River to Tahan Stream, while decrease at Kuan-Du station.  相似文献   

6.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

7.
为阐明强潮河口最大浑浊带的形成机制及其运动规律,通过瓯江和椒(灵)江实测资料分析,系统分析了强潮河口最大浑浊带形成的影响因素及其与河口地貌的响应关系。考虑黏性细颗粒泥沙运动特性和盐度的影响,开发了强潮河口最大浑浊带数学模型,对椒(灵)江枯季大潮最大浑浊带运移过程进行了模拟。结果表明:①强潮河口最大浑浊带是潮波变形、咸淡水混合、泥沙再悬浮等复杂因素在一定河口边界和泥沙条件下相互作用的产物,潮波变形和泥沙供给是影响最大浑浊带形成的关键因素。②强潮河口最大浑浊带模拟必须充分考虑潮流、盐淡水混合、泥沙周期性起动、絮凝和沉积密实等因素,所建立的数学模型可用于强潮河口最大浑浊带研究。  相似文献   

8.
In comparison to their temperate counterparts, sediment processes in tropical estuaries are poorly known and especially in African ones. The hydrodynamics of such environments is controlled by a combination of multiple processes including morphology, salinity, mangrove vegetation, tidal processes, river discharge, settling and erosion of mud and by physico-chemical processes as well as sediment dynamics.The aim of this study is to understand the sediment processes in this transitional stage of the estuary when the balance between river discharges and marine processes is reversing. Studying the hydrodynamics and sediment dynamics of the Konkouré Estuary has recently been made possible thanks to new data on bathymetry, sedimentary cover, salinity, water elevations, and current velocities. The Lower Konkouré is a shallow, funnel shaped, mesotidal mangrove-fringed, tide-dominated estuary, well mixed during low river discharge and stratified during high river discharge. The Konkouré Estuary is turbid despite the small amount of terrestrial input and its residual velocity at the mouth during low river discharges, landwards for two of the three branches, suggests a landward migration by tidal pumping of the suspended particulate matter. A Turbidity Maximum Zone (TMZ) is identified for typical states of the estuary with regard to fluvial and tidal components. Suspended sediment transport during a transitional stage between the rainy and dry seasons is known thanks to current velocity and Suspended Sediment Concentration (SSC) measurements taken in November 2003. The Richardson layered number calculation assesses that turbulence is the major mixing process in the water column, at least during the flood and ebb stages, whereas stratification occurs during the slack water periods. Tidal currents generate bottom erosion, and turbulence mixes the suspended sediment throughout the water column. As a result, a net sediment input is calculated from the western Konkouré outlet for two consecutive tidal cycles. Despite the net water export, almost 300 tons per tide reach the estuary through this outlet, for a moderate river flow.  相似文献   

9.
Tidal flow and fine-sediment transport at the South Channel–North Passage of the partially-mixed Changjiang River estuary were studied using a two-dimensional horizontal (2DH) numerical model. This 2DH model was achieved by depth-integrating the momentum and convection–diffusion equations. The Alternating Direction Implicit scheme was used to solve the governing equations. The iterative method was adopted for the calculation of convection and diffusion terms of momentum equation. Comparisons between calculated and measured results (tidal elevations and depth-averaged velocities) have shown reasonable agreement. Horizontal distributions of tidal current velocity and suspended sediment concentration were qualitatively consistent with observations. Those modeled results were analyzed to elucidate the mechanisms for the formation of the turbidity maximum and intratidal variations in fine-sediment transport processes.  相似文献   

10.
Settling velocities of suspended cohesive sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often considered as the principal cause. Turbulence and the suspended sediment concentration, as well as other factors such as salinity, dissolved organic substances, flocculation ability, and the rate of floc growth affect setting velocities. A laterally–averaged finite difference model for hydrodynamics and cohesive sediment transport is developed and applied in the Tanshui River estuary, Taiwan. The model has been calibrated and verified with water surface elevation, longitudinal velocity, salinity, and cohesive sediment measured. The overall performance of the model is in qualitative agreement with the available data. The model is used to investigate the influence of settling velocity on cohesive sediment transport dynamics. The simulation indicates that the turbidity maximum zone is near Kuan–Du. When settling velocities increase the surface cohesive sediment concentration at Kuan–Du station trends to decrease and bottom cohesive sediment concentration increases. Both surface and bottom cohesive sediment concentrations decrease at Taipei Bridge and Pa–Ling Bridge. This implies that suspended sediment advected seaward and deposited. There is consequently a net seaward flux of suspended sediment near surface, and a net landward flux near the bed.  相似文献   

11.
The suspension transport away from the extensive turbidity zone of the St. Lawrence estuary is largely determined by the channel topography. The suspended sediments are advected downstream by a 40 km long turbid plume which takes its source in a turbidity maximum at the head of the estuary and flows downstream partly confined by the South Channel. During the ebbing phase of tidal cycles, the turbid waters of the plume are forced downstream through narrow converging sections of the channel, and slowed down through more opened diverging regions, particularly down-stream of the St. Roch Traverse. These, large fluctuations in stratification modulate the vertical transport of suspended material from the bottom to the surface layer. Midway down the estuary, dispersion of the plume occurs along a frontal zone which seasonally migrates 30 km or more in response to changes in fresh water discharge. The plume is reinforced and the turbidity gradient is intensified by local injections of inshore waters from Ste. Anne Bay, a subtidal platform highly enriched in suspended material by intertidal exchanges with large mudllats. Lateral erosion of the plume and cross-channel transport of suspended matter from the South into the North Channel is made possible by large horizontal shears developing in the central part of the middle estuary during the early flood. These are created by a one-hour tidal phase difference between the North and the South Channel.  相似文献   

12.
珠江河口沉积物粒度特征及其对底层水动力环境的指示   总被引:17,自引:3,他引:14  
珠江口伶仃洋及邻近海域沉积物粒级变化大。频率分布曲线形态的变化揭示了珠江河口不同区域泥沙来源的差异。在平面分布上,粗粒级含量从西北部和北部向东南部迅速降低,而细粒级含量高值往往出现在河口中部。表层沉积物平均粒径梯度变化方向与珠江口悬浮物的运移方向大致吻合。反演获得的底层海流不同区域的优势速度与实测资料相符。两者较好地指示了沉积物多年平均优势海流速度和方向,表明利用沉积物粒度数据比较成功地反演出了珠江口沉积物推积前的搬运水动力环境。  相似文献   

13.
Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment–discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30–40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the “flushing season” (October through April). Previous estimates of annual or seasonal sediment delivery from tributaries and the Federal Dam to the ETM and harbor may be high for those years with extreme tributary high-flow events.  相似文献   

14.
The effects of damming on the materials flux in the Colorado River delta   总被引:1,自引:0,他引:1  
During the last century, the Colorado River delta (CRD) has been dramatically altered by the diversion of river water for use in human activities. This alteration has eliminated the delivery of fresh water to the Gulf of California radically transforming the former estuary into an inverse-estuary. Under the new conditions, the new materials budget was estimated at the mouth of the Colorado River in terms of salts, total suspended sediments, organic suspended matter and nutrients. The results of this study show that, because of the asymmetry of the tidal wave, the variability of seston concentration follows a sedimentation pattern of three successive stages: re-suspension (erosion at ebb flow) > dilution (during flood flow) > sedimentation (at the end of the flood stage). The tidal asymmetry during neap tides was characterized by longer ebb (at least, 30 min longer) than flood and more intense ebb currents (as much as 43% higher), hence characterizing an ebb-dominated system. The CRD is characterized by high nutrients concentrations. Maximal levels are: nitrates (41 μM), phosphates (2.6 μM) and silicates (68 μM), nitrite (15 μM). The mass balance indicates that the system acts as a net exporter of suspended sediment with rates as high as 7 tons per tidal cycle. This behavior indicates that the CRD is in a destructive stage as a result of the lack of freshwater inflow and supply of sediment into the system.  相似文献   

15.
A three-dimensional, intratidal sediment transport model is developed for the estuarine turbidity maximum (ETM) in the upper Chesapeake Bay. The model considers three particle size classes, including the fine class mostly in suspension in the water column, the medium class alternately suspended and deposited by tidal currents, and the coarse size suspended only during the times of relatively high energy events. Based on the results of a box model, depth-limited erosion with continuous deposition is employed for the medium and coarse classes by varying the critical shear stress for erosion as a function of eroded mass. For the fine class, mutually exclusive erosion and deposition is employed with a small constant value for the critical shear stresses for erosion and deposition to assure quick erosion of recently deposited fine particles but without allowing further erosion of consolidated bed sediments. The model is run to simulate the annual condition in 1996, and the model generally gives a reasonable reproduction of the observed characteristics of the ETM relative to the salt limit and tidal phase. The model results for 1996 are analyzed to study the characteristics of the ETM along the main channel of the upper bay in intertidal and intratidal time scales. Under a low flow condition, local erosion/deposition and bottom horizontal flux convergence are the main processes responsible for the formation of the ETM, with the settling flux confining the ETM to the bottom water. Under a high flow condition, a distinctive ETM is formed by strong convergence of the downstream flux of sediments eroded from the upstream of the null zone and the upstream flux of sediments settled at the downstream of the null zone. Intratidal variation of the ETM is mainly controlled by erosion and the tidal transport of eroded sediments for a low flow condition. Under the direct influence of a high flow event, the ETM is mainly formed by erosion during ebbing tidal current strengthened by large freshwater discharge and by convergence of ebbing freshwater discharge and flooding tidal current. During the rebounding stage of a high flow event, intratidal variations are mainly controlled by tidal asymmetry caused by the interaction between tidal currents, gravitational circulation, and stratification.  相似文献   

16.
Moored instruments were used to make observations of near bottom currents, waves, temperature, salinity, and turbidity at shallow (3.5 m and 5.5 m depth) dredged sediment disposal sites in upper Chesapeake Bay during the winters of 1990 and 1991 to investigate time-varying characteristics of resuspension processes over extended periods. Resulting time series data show the variability of two components of the suspended sediment concentration field. Background suspended sediment concentrations varied inversely with salinity and in direct relation to Susquehanna River flow. Muddy bottom sediments were also resuspended locally by both tidal currents and wind-wave forcing, resulting in short-term increases and decreases in suspended concentration, with higher peak concentrations near the bottom. In both years, episodes of wave-forced resuspension dominated tidal resuspension on an individual event basis, exceeding most tidal resuspension peaks by a factor of 3 to 5. The winds that generated the waves responsible for the observed resuspension events were not optimal for wave generation, however. Application of a simple wind-wave model showed that much greater wave-forced resuspension than that observed might be generated under the proper conditions. The consolidated sediments investigated in 1990 were less susceptible to both tidal and wave-forced resuspension than the recently deposited sediments investigated in 1991. There was also some indication that wave-forced resuspension increased erodibility of the bottom sediments on a short-term basis. Wave-forced resuspension is implicated as an important part of sediment transport processes in much of Chesapeake Bay. Its role in deeper, narrower, and more tidally energetic estuaries is not as clear, and should be investigated on a case-by-case basis.  相似文献   

17.
莱州湾悬沙输运机制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈斌  刘健  高飞 《水科学进展》2015,26(6):857-866
基于2012年实测的潮流、含沙量及表层沉积物数据及资料等,分析了潮流、余流、潮流底应力及底质类型对含沙量变化的影响,并运用物质通量分析方法,探讨了莱州湾悬浮泥沙的输运机制.研究结果表明:研究海域受半日潮控制呈往复流特征,涨、落潮期间近底含沙量与流速及潮流底应力显著相关,存在明显的再悬浮现象,含沙量呈现潮周期变化特征;底质类型与含沙量大小密切相关,细颗粒物质更容易发生悬浮;平流输运与潮泵效应是莱州湾海域的悬沙输运的主要动力因素.  相似文献   

18.
Sediment transport and trapping in the Hudson River estuary   总被引:3,自引:0,他引:3  
The Hudson River estuary has a pronounced turbidity maximum zone, in which rapid, short-term deposition of sediment occurs during and following the spring freshet. Water-column measurements of currents and suspended sediment were performed during the spring of 1999 to determine the rate and mechanisms of sediment transport and trapping in the estuary. The net convergence of sediment in the lower estuary was approximately 300,000 tons, consistent with an estimate based on sediment cores. The major input of sediment from the watershed occurred during the spring freshet, as expected. Unexpected, however, was that an even larger quantity of sediment was transported landward into the estuary during the 3-mo observation period. The landward movement was largely accomplished by tidal pumping (i.e., the correlation between concentration and velocity at tidal frequencies) during spring tides, when the concentrations were 5 to 10 times higher than during neap tides. The landward flux is not consistent with the long-term sediment budget, which requires a seaward flux at the mouth to account for the excess input from the watershed relative to net accumulation. The anomalous, landward transport in 1999 occurred in part because the freshet was relatively weak, and the freshet occurred during neapetides when sediment resuspension was minimal. An extreme freshet occurred during 1998, which may have provided a repository of sediment just seaward of the mouth that re-entered the estuary in 1999. The amplitude of the spring freshet and its timing with respect to the spring-neap cycle cause large interannual variations in estuarine sediment flux. These variations can result in the remobilization of previously deposited sediment, the mass of which may exceed the annual inputs from the watershed.  相似文献   

19.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

20.
河口沉积物孔隙水营养盐分布特征及扩散通量   总被引:1,自引:0,他引:1  
董慧  郑西来  张健 《水科学进展》2012,23(6):815-821
通过2010年夏季在李村河口潮滩区3个站位的采样分析,研究了孔隙水营养盐的分布特征,并利用Fick第一定律估算了沉积物-水界面间营养盐的扩散通量。结果表明,孔隙水营养盐在不同站位间质量浓度不同,呈现出自河口上游向下游逐渐降低的分布趋势。NH4+-N质量浓度为26.21~53.10 mg/L,是孔隙水中营养盐的主要组分。沉积物中有机物的降解反应主要在还原状态下进行,营养盐质量浓度在垂向上的变化受有机质含量及沉积物氧化还原环境改变的综合影响。除NO3--N外其他营养盐均由沉积物向上覆水体扩散,沉积物是底层水体营养盐的重要来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号