首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic data are usually separated into P-waves and S-waves before being put through a scalar (acoustic) migration. The relationship between polarization and moveout is exploited to design filters that extract the desired wavetype. While these filters can always be applied to shot records, they can only be applied to a triaxial common-receiver gather in special cases since the moveout of scattered energy on the receiver gather relates to path differences between the surface shots and the scatterer while the polarization is determined by the path from scatterer to downhole geophone. Without the ability to separate wavefields before migration, a ‘vector scalar’ or an elastic migration becomes a necessity. Here the propagation of the elastic wavefield for a given mode (e.g. P-S) is approximated by two scalar (acoustic) propagation steps in a ‘vector scalar’ migration. ‘Vector’ in that multicomponent data is migrated and 'scalar’ in that each propagation step is based on a scalar wave equation for the appropriate mode. It is assumed that interaction between the wavefields occurs only once in the far-field of both the source and receiver. Extraction of the P, SV and SH wavefields can be achieved within the depth migration (if one assumes isotropy in the neighbourhood of the downhole receiver) by a projection onto the polarization for the desired mode. Since the polarization of scattered energy is only a function of scatterer position and receiver position (and not source position), the projection may be taken outside the migration integral in the special case of the depth migration of a common-receiver gather. The extraction of the desired mode is then performed for each depth migration bin after the separate scalar migration of each receiver gather component. This multicomponent migration of triaxial receiver gathers is conveniently implemented with a hybrid split-step Fourier-excitation-time imaging condition depth migration. The raytracing to get the excitation-time imaging condition also provides the expected polarization for the post-migration projection. The same downward extrapolated wavefield can be used for both the P-P and P-S migrations, providing a flexible and efficient route to the migration of multicomponent data. The technique is illustrated on a synthetic example and a single-level Walk-away Seismic Profile (WSP) from the southern North Sea. The field data produced images showing a P-P reflector below the geophone and localized P-P and P-S scatterers at the level of the geo-phone. These scatterers, which lie outside the zone of specular illumination, are interpreted as faults in the base Zechstein/top Rotliegendes interface.  相似文献   

2.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

3.
A modern approach to migration is to perform wavefield extrapolation, subject to an imaging condition. Correct wavefield extrapolation requires that the boundary conditions at the array of geophones satisfy the wave equation. A sufficient condition is to perform the survey with a single stationary source. Contrary to this condition, many VSPs are conducted in deviated wells, where the source is maintained vertically above the down-hole geophone at each well station. Such a survey fails to provide the boundary conditions theoretically necessary for wave-equation migration. A recently published inversion scheme, referred to as acoustic generalized Radon transform migration (GRT migration), was developed to handle any configuration of sources and geophones, including moving-source deviated-well VSP surveys. GRT migration may be viewed as a weighted version of the generalized Kirchhoff migration, derived in this paper from the exploding-reflector model. When a VSP-survey geometry has been specified, GRT migration can be expressed in terms of array parameters, and compared with the equivalent expression for Kirchhoff (wave-equation) migration. The differences between the two integrals are significant and their effect is demonstrated on VSP data.  相似文献   

4.
VSP上下行反射波联合成像方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
VSP资料上下行波场发育丰富.本文在分析VSP直达波、上行反射波、下行反射波传播路径及其照明范围的基础上,指出了常规VSP波动方程偏移方法缺陷,进而通过修改波场延拓方式,提出了上下行反射波联合成像方法,并在高频近似下分析了该方法的成像原理.该方法不需要进行VSP上下行反射波场分离,能够同时对VSP资料中的一次反射波、自由表面多次波、层间多次波进行成像,比常规成像剖面具有更宽的成像范围和更好的成像效果.该方法能够对下行一次反射波进行成像,从而可以实现常规偏移方法难以处理的高陡倾角构造成像.模拟资料和实际资料处理证明了本文方法的正确性.  相似文献   

5.
基于Hilbert变换的全波场分离逆时偏移成像   总被引:2,自引:2,他引:0       下载免费PDF全文
逆时偏移方法利用双程波算子模拟波场的正向和反向传播,通常采用互相关成像条件获得偏移剖面,是一种高精度的成像方法.但是传统的互相关成像条件会在偏移结果中产生低频噪声;此外,如果偏移速度中存在剧烈速度变化还可能进一步产生偏移假象.为了提高逆时偏移的成像质量,可在成像过程中先对震源波场和检波点波场分别进行波场分离,然后选择合适的波场成分进行互相关成像.本文基于Hilbert变换,推导了可在偏移过程中进行上下行和左右行波场分离的高效波场分离公式以及相应的成像条件,结合Sigsbee 2B合成数据,给出了不同波场成分的互相关成像结果.数值算例结果表明,采用本文提出的高效波场分离算法以及合理的波场成分互相关成像条件可以获得高信噪比的成像结果.  相似文献   

6.
Seismic depth migration may result in false reflector positioning and destructive interference when an incorrect velocity field is used to convert from time to depth. The assumption of isotropy to describe anisotropic rocks is one major source of error in the velocity model, although individual survey images may not be impaired by such an approximation. When different survey types such as VSP and cross-hole reflection seismics have coincident illumination of the subsurface, it is important not only to produce consistent images upon depth migration, but also to determine a consistent velocity model. Using real data sets as examples, both objectives are successfully achieved when anisotropy is incorporated into the velocity model.  相似文献   

7.
非零偏VSP弹性波叠前逆时深度偏移技术探讨   总被引:1,自引:1,他引:0       下载免费PDF全文
非零偏VSP地震资料是一种多分量资料,处理非零偏VSP资料,弹性波叠前逆时深度偏移技术无疑是最适合的处理技术.本文从二维各向同性介质的弹性波波动方程出发,研究了对非零偏VSP资料进行叠前逆时深度偏移的偏移算法,讨论了逆时传播过程中的边值问题和数值频散问题及其相应的解决方案;采用求解程函方程计算得到地下各点的地震波初至时间作为成像时间,实现了非零偏VSP资料的叠前逆时深度偏移.最后进行了模型试算和非零偏VSP地震资料的试处理,结果表明该方法不受地层倾角限制,较适用于高陡构造地区或介质横向速度变化较大地区的非零偏VSP地震资料处理.  相似文献   

8.
采用弹性波全波形反演方法精确重建深部金属矿多参数模型,建模过程采用基于地震照明的反演策略.首先给出基于照明理论的观测系统可视性定义,利用可视性分析构建新的目标函数,对反演目标可视性较高的炮检对接收到的地震记录在波场匹配时占有更高的权重,确保了参与反演计算中的地震数据的有效性;其次将给定观测系统对地下介质的弹性波场照明强度作为优化因子,根据地震波在波阻抗界面处的能量分配特点,自适应补偿波场能量分布和优化速度梯度,以提高弹性波全波形反演过程的稳定性和反演结果的精度.理论模型和金属矿模型反演试验结果表明,基于可视性分析和能量补偿的反演策略可以使弹性波全波形反演更快地收敛到目标函数的全局极小值,获得适用于金属矿高分辨率地震偏移成像的多参数模型.  相似文献   

9.
The state-of-the-art joint migration inversion faces the so-called amplitude-versus-offset challenge, due to adopting over-simplified one-way propagation, reflection and transmission operators to avoid over-parameterization in the inversion process. To overcome this challenge, we apply joint migration inversion to horizontally layered media (or 1.5-dimensional media) and parameterize the solution space via density and velocity models. In this scenario, one-way propagation, reflection and transmission operators required by the joint migration inversion process can be analytically and correctly derived from the subsurface models, so the amplitude-versus-offset challenge is successfully overcome. We introduce a new concept, which is named ‘inverse propagation’, into our 1.5-dimensional amplitude-versus-offset joint migration inversion. It can correctly reconstruct subsurface wavefields by using a surface-recorded receiver wavefield with all the influence of transmission, reflection and multiples accounted for. A synthetic example is used to demonstrate the correctness of the inverse propagation. This work is the foundation to further develop the 1.5-dimensional amplitude-versus-offset joint migration inversion technology.  相似文献   

10.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   

11.
三维VSP资料中,各种不同类型的波混杂一起形成复杂的波场.因此,波场分离是三维VSP数据处理关键的第一步.从不同波场的偏振方向和传播方向之差异着手,提出了一种高保真的VSP波场分离方法.首先通过射线追踪和偏振滤波的结合,把复杂波场(分解为简单波场;然后根据简单波场中不同波的传播方向截然相反的特点,进行方向滤波,达到波场分离的目的.实际数据处理表明,与常规波场分离方法相比,本方法大大降低了混波作用以及由此而生的波形畸变.  相似文献   

12.
Distributed acoustic sensing is a growing technology that enables affordable downhole recording of strain wavefields from microseismic events with spatial sampling down to ∼1 m. Exploiting this high spatial information density motivates different detection approaches than typically used for downhole geophones. A new machine learning method using convolutional neural networks is described that operates on the full strain wavefield. The method is tested using data recorded in a horizontal observation well during hydraulic fracturing in the Eagle Ford Shale, Texas, and the results are compared to a surface geophone array that simultaneously recorded microseismic activity. The neural network was trained using synthetic microseismic events injected into real ambient noise, and it was applied to detect events in the remaining data. There were 535 detections found and no false positives. In general, the signal-to-noise ratio of events recorded by distributed acoustic sensing was lower than the surface array and 368 of 933 surface array events were found. Despite this, 167 new events were found in distributed acoustic sensing data that had no detected counterpart in the surface array. These differences can be attributed to the different detection threshold that depends on both magnitude and distance to the optical fibre. As distributed acoustic sensing data quality continues to improve, neural networks offer many advantages for automated, real-time microseismic event detection, including low computational cost, minimal data pre-processing, low false trigger rates and continuous performance improvement as more training data are acquired.  相似文献   

13.
相对保幅的角度域VSP逆时偏移(英文)   总被引:3,自引:1,他引:2  
本文介绍了一种改进的角度域VSP逆时偏移方法。对VSP逆时偏移中的逆推公式进行了改进,为方便数值计算出相对保幅的角度域共成像点道集(ADCIGs)。此外VSP记录到的波场信息丰富,包括上行波场、下行波场和直达波场等,本文分析了这些波场的响应特征,发现直达波和下行波在角度域共成像点道集(ADCIGs)上都产生了成像噪音,直达波产生的噪音尤为严重。把该方法用于我国西部地区实际观测的VSP资料,不仅获得相对保幅角度域共成像点道集(ADCIGs),而且压制了成像噪音。通过数值模型试算,实际资料的应用验证了该方法的实用性与有效性,从而为VSP偏移速度分析、VSP AVA/AVO分析和反演等提供可靠的基础资料。  相似文献   

14.
15.
基于波场延拓的叠前深度偏移是实现复杂构造地质体成像的最可靠方法,但存在着计算量大、对观测系统适应性差等缺点。面炮偏移是波动方程实现精确叠前成像的另一类方法,具有较高的计算效率,不存在偏移孔径问题,而且可以通过控制照明方法,解决平面波在目标区域的能量补偿问题。本文采用面炮成像技术进行叠前深度偏移成像,通过对面炮震源下行波场的质量控制以及射线参数的个数和范围的选取,以达到最佳的成像效果。采用不同深度点上的控制照明技术,较大地提高了目标地层的成像精度。数据实验表明面炮成像技术是一种快速有效的方法,其成像精度与单平方根算子的共炮点道集偏移和双平方根算子的共中心点道集偏移相当,但在计算速度上要快得多,而且易于并行计算。  相似文献   

16.
Both approximate and exact formulations for the interaction of an incident elastic wave with a cased borehole are presented. In the approximate method, simple and explicit formulae are derived for the pressure in fluid at low frequencies. In the exact method, elastic potentials in each annulus are represented as a superposition of fundamental solutions to the Helmholtz equations. Continuity of displacements and stresses across layer boundaries are used to determine unknown coefficients. A global matrix algorithm is employed to compute simultaneously these coefficients in individual layers. Calculations show that, in cased boreholes, the borehole effects on downhole seismic measurements are more significant than in open boreholes. A strong resonance occurs in the fluid for SV-wave incidence from a soft formation. This resonance is prominent even at very high frequencies because the tube-wave velocity is raised well above the formation shear velocity by the steel pipe. At a particular angle of incidence of a plane P-wave, the pressure in the fluid is near zero at low frequencies (the cased borehole screening phenomenon). For hard formations and frequencies above 1 kHz, the cased borehole influence on a downhole geophone measurement is significant, especially at grazing incidence. For soft formations, both the pressure in the fluid and the solid displacement on the borehole wall show strong dependence on frequency and angle of incidence, even at low frequencies.  相似文献   

17.
王维红  张伟  石颖  柯璇 《地球物理学报》2017,60(7):2813-2824
尽管叠前逆时偏移成像精度高,但仅针对单一纵波的成像也可能形成地下介质成像盲区,由于基于弹性波方程的逆时偏移成像可形成多波模式的成像数据,因此弹性波逆时偏移成像可提供更为丰富的地下构造信息.本文依据各向同性介质的一阶速度-应力方程组构建震源和检波点矢量波场,再利用Helmholtz分解提取纯纵波和纯横波波场,使用震源归一化的互相关成像条件获得纯波成像,避免了直接使用坐标分量成像而引起的纵横波串扰问题.针对转换波成像的极性反转问题,文中提出一种共炮域极性校正方法.为有效节约存储成本,也提出一种适用于弹性波逆时偏移的震源波场逆时重建方法,在震源波场正传过程中,仅保存PML边界内若干层的速度分量波场,进而逆时重建出所有分量的震源波场.本文分别对地堑模型和Marmousi2模型进行了弹性波逆时偏移成像测试,结果表明:所提出的共炮域极性校正方法正确有效,基于波场分离的弹性波逆时偏移成像的纯波数据能够对复杂地下构造准确成像.  相似文献   

18.
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.  相似文献   

19.
波动方程偏移成像阴影的照明补偿   总被引:6,自引:6,他引:6       下载免费PDF全文
受地下复杂构造和地震数据采集系统的影响,使地震波对地下目标的照明出现不均匀性,地震采集系统难以有效地获取地下某些目标的反射信息,进而使数据偏移成像在这些目标体上出现成像阴影. 根据波场和Green函数的窗口Fourier框架展开,利用角度域波动方程偏移成像和波动方程照明分析,并结合波动方程反演理论,提出一种角度域波动方程偏移成像阴影照明补偿方法. 这种补偿方法能同时考虑地震数据采集系统和波场传播路径对偏移成像的影响,消除复杂构造区的偏移成像阴影,改进波动方程叠前深度偏移成像在复杂构造区的成像效果.  相似文献   

20.
时间二阶积分波场的全波形反演   总被引:4,自引:4,他引:0       下载免费PDF全文
陈生昌  陈国新 《地球物理学报》2016,59(10):3765-3776
通过对波场的时间二阶积分运算以增强地震数据中的低频成分,提出了一种可有效减小对初始速度模型依赖性的地震数据全波形反演方法—时间二阶积分波场的全波形反演方法.根据散射理论中的散射波场传播方程,推导出时间二阶积分散射波场的传播方程,再利用一阶Born近似对时间二阶积分散射波场传播方程进行线性化.在时间二阶积分散射波场传播方程的基础上,利用散射波场反演地下散射源分布,再利用波场模拟的方法构建地下入射波场,然后根据时间二阶积分散射波场线性传播方程中散射波场与入射波场、速度扰动间的线性关系,应用类似偏移成像的公式得到速度扰动的估计,以此建立时间二阶积分波场的全波形迭代反演方法.最后把时间二阶积分波场的全波形反演结果作为常规全波形反演的初始模型可有效地减小地震波场全波形反演对初始模型的依赖性.应用于Marmousi模型的全频带合成数据和缺失4Hz以下频谱成分的缺低频合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验显示缺失4Hz以下频谱成分数据的反演结果与全频带数据的反演结果没有明显差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号