首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
研究了一种摇摆式钢筋混凝土框架的抗震性能。首先建立了摇摆式钢筋混凝土框架结构的有限元模型并进行了试验验证;其次使用弹塑性静力分析方法评定无控及受控式摇摆钢筋混凝土框架结构的抗震性能;最后对比分析无控及受控摇摆式钢筋混凝土框架结构的抗震性能。结果表明设置阻尼器后的摇摆式钢筋混凝土框架的结构等效阻尼比大幅度提升,结构塑性变形耗能转变成阻尼器屈服耗能,结构位移响应得到了有效控制。  相似文献   

2.
柱端铰型受控摇摆钢筋混凝土框架采用整体结构刚度"弱化"的方式来减小结构的地震作用效应,同时通过设置层间阻尼器来控制结构地震位移响应并消耗地震能量。模拟地震振动台试验研究结果表明,在罕遇地震作用下,模型主体结构未见损伤,结构抗震性能优异。首先介绍柱端铰型受控摇摆钢筋混凝土框架结构形式,并进行有限元计算分析,通过与试验结果对比验证数值建模的正确性,其次使用Pushover分析方法对比和评定无控及受控状态下柱端铰型摇摆框架的抗震性能。分析结果表明,通过设置层间耗能阻尼器,受控柱端铰型摇摆框架的位移响应可以得到有效控制,地震加速度和位移响应满足抗震性能指标。  相似文献   

3.
针对钢筋混凝土框架结构的受力特点,采用增设摇摆刚架的抗震设计方法,以提高罕遇地震下建筑结构的安全性。建立了框架一摇摆刚架结构体系的计算模型,结合状态空间法与虚拟激励法,求解结构的平稳随机响应,并根据计算所得随机响应对框架一摇摆刚架体系的动力可靠度进行分析。以西部地区某已建成的6层框架结构为算例,探讨了罕遇地震作用下不同刚度比的摇摆刚架对新结构体系动力可靠度的影响。结果表明,通过增设不同刚度比的摇摆刚架,可以有效协调结构体系的变形模式,充分发挥结构的耗能能力,降低整体结构的条件失效概率。  相似文献   

4.
为了探究能够全面评估钢筋混凝土结构抗震性能的量化指标,借助有限元软件ABAQUS对一拟建的10层框架-剪力墙结构进行了大量的非线性动力时程数值计算,对比分析了不同地震作用下最大层间位移角与滞回耗能的分布情况,从结构滞回耗能的角度揭示了破坏机制,得到主要结论如下:结构层间位移角最大的位置不一定是损伤破坏最严重或者薄弱的部位,以层间位移角作为整体结构抗震性能的判别指标离散性较大,计算结果易受所选地震波的方法及数量影响;结构滞回耗能沿楼层的分布受地震波选取方法和数量的随机性影响较小,结构底层耗能对结构整体耗能贡献最大,约占结构总耗能的60%,其余各楼层滞回耗能约占结构总滞回耗能的1%~8%;梁和柱滞回耗能主要集中于结构底部1层,总的框架梁滞回耗能仅占结构总滞回耗能的18%~22%,绝大部分地震输入能由框架柱吸收,总的框架柱滞回耗能占结构总滞回耗能的80%左右,该计算结果与实际震害中结构主要形成"柱铰"破坏机制的现象较为一致。  相似文献   

5.
提出一种组合型减震结构,由钢框架、节点阻尼器和原结构连接组成,外附钢框架将节点阻尼器连接在原混凝土框架结构上形成的增设节点阻尼器的外附钢框架结构,节点阻尼器的剪切滞回变形可以减小结构自身需要消耗的能量,从而提高原结构抗震性能。对原混凝土结构和增设节点阻尼器的组合型结构进行了的振动台试验。通过分析结构在不同地震波激励下的加速度和位移响应,得出楼层加速度和层位移的减震效果。研究结果表明:该结构体系在小震作用下通过提高结构刚度来增强其抗震性能;在大震作用下则可借助节点阻尼器的变形耗能来提升结构耗能能力,结构加速度减震系数达到53%,层间位移减震系数高达72%,验证了增设节点阻尼器的外附钢框架结构的减震效果。  相似文献   

6.
一栋相似比为1/4的8层双跨混凝土框架经初次振动台试验,发生初次震损后,采用环氧树脂注胶修复技术对框架损伤区域的裂缝进行修复,然后再次进行振动台试验.针对两次振动台的试验结果,本文着重从模型破坏情况、结构最大反应、楼层剪力、楼层抗侧刚度及滞回耗能等方面综合比较混凝土框架模型在初次振动台试验、再次振动台试验中抗震性能,以此评价高强胶黏剂修复技术修复混凝土框架结构的有效性.结果表明:经过修复,框架模型的顶层最大相对位移和层间位移角减小;修复模型的抗侧刚度要大于初始模型;修复后,框架模型由节点区破坏(梁柱交界面)转移到梁端塑性铰破坏,破坏模式的改变使得滞回耗能总量增大.可以认为,本文采用的方法对框架结构的地震损伤修复具有较好的效果.  相似文献   

7.
本文通过能量法研究了钢筋混凝土筒体结构的抗震性能。文中采用振型分解法按等效单自由度体系求解筒体结构的滞回输入能;用pushover法分析了滞回耗能在结构层间的分布规律及结构自身的耗能能力;根据楼层滞回耗能与弹塑性层间位移的关系求出了薄弱层的弹塑性位移。对一高层钢筋混凝土框架-筒体结构在7度罕遇地震下的抗震性能进行了评估,通过与非线性动力时程分析的对比,证明了方法的可行性。  相似文献   

8.
为研究摇摆墙刚度对框架摇摆墙结构抗震性能的影响,对1个4层钢筋混凝土框架结构模型,用有限元软件SAP2000对附加不同刚度的摇摆墙结构进行了静力非线性分析。分析结果表明:随着摇摆墙刚度的增大可以逐渐改善框架的抗震性能,使框架变形更加均匀,层间位移角更趋于一致。但刚度增加到一定程度后,其值进一步增大时结构的抗震性能趋于稳定。对于本文的结构模型摇摆墙与框架的刚度比小于1.27%时,对框架的破坏机制影响很小。摇摆墙的刚度比大于2.48%时,开始改变框架的破坏机制,逐渐从层破坏机制变为整体破坏机制。摇摆墙的刚度比大于6.81%时,结构具有稳定的整体破坏机制。  相似文献   

9.
装配式预制混凝土框架结构拟动力试验研究   总被引:4,自引:0,他引:4  
本文对2个采用橡胶垫螺栓连接梁柱节点的单层两跨的装配式预制混凝土框架结构进行拟动力试验,考察结构的破坏模式,研究结构的强度、刚度、滞回、耗能等抗震性能。试验结果表明:此类装配式预制混凝土框架结构具有较好的抗震性能,当层间位移角达到1/25时,结构仍具有一定的承载能力,采用橡胶垫螺栓连接的梁柱节点抗震性能良好,结构体系破坏模式为柱底弯曲破坏。  相似文献   

10.
为提高装配式钢筋混凝土(RC)框架结构的抗震性能,并针对震后梁、柱构件损伤严重等问题,提出一种基于人工塑性消能铰的装配式混凝土框架-摇摆墙结构。人工消能塑性铰即梁、柱构件在梁端采用机械铰及附加耗能钢板连接的构造,基于该构造的框架结合底部铰接的剪力墙,形成人工消能塑性铰框架-摇摆墙结构。使用OpenSEES软件建立了人工消能塑性铰框架-摇摆墙模型及2组对比模型,选用24条天然地震波对3组结构模型进行双向地震响应分析,结果表明:人工消能塑性铰框架-摇摆墙结构可通过摇摆墙的构造,提升结构竖向连续刚度,使结构层间变形均匀,实现完全梁铰的理想屈服机制;在整体可控的变形模式下充分利用人工消能塑性铰滞回耗能,有效减小结构地震响应。  相似文献   

11.
钢筋混凝土带开孔梁框架抗震性能试验研究   总被引:3,自引:2,他引:1  
本文通过两榀单层单跨带开孔梁框架的拟动力试验,对试件的破坏形态、动力反应、滞回曲线、耗能能力、刚度退化等抗震性能进行研究,最后对钢筋混凝土带开孔梁框架结构的抗震性能作出了评论。  相似文献   

12.
通过5榀钢筋混凝土填充墙框架结构低周反复荷载试验,系统研究了填充墙-框架柔性连接和刚性连接、墙端设置芯柱和不设置芯柱结构的破坏机理和抗震性能,对滞回曲线、骨架曲线、位移延性比、累积耗能、强度衰减和刚度退化等抗震性能指标进行了分析。试验结果表明:柔性连接方案对结构承载力的提高低于刚性连接方案,但其他性能指标均优于刚性连接方案。例如,提高了结构初始刚度,且刚度退化现象减缓;提高了结构位移延性比和累积耗能;填充墙破损程度减轻;减小或消除了填充墙对框架柱的附加剪力影响等。同时,填充墙内芯柱的设置有效提高了结构承载力、刚度和整体稳定性。  相似文献   

13.
防屈曲支撑(buckling-restrained braces,BRB)不仅为结构提供抗侧刚度,且在地震中可通过芯材的屈服吸收能量,从而减少输入主体结构的能量,有效地改善了结构的抗震性能。防屈曲支撑在结构体系中的合理配置是影响结构抗震性能的重要因素。对于防屈曲支撑-钢筋混凝土(Reinforced Concrete,RC)框架结构,主体结构刚度主要由梁柱构件截面尺寸决定,而主体结构强度由截面尺寸和配筋共同决定。基于此,以BRB-RC框架结构为例,分别采用基于剪力比和刚度比的设计方法进行BRB参数设计,对2种方法设计后的结构进行反应谱及弹塑性时程分析,从周期、层间位移角最大值、滞回耗能比及滞回曲线等方面对结构抗震性能进行评估和对比分析。分析获得了基于刚度比和剪力比设计方法的优缺点,为BRB-RC框架结构的减震设计提供了参考。  相似文献   

14.
地震作用后钢筋混凝土框架结构恢复性模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
陈竣  罗凡 《地震工程学报》2019,41(3):568-573
钢筋混凝土框架结构在地震冲击后,其刚体退化特性复杂,存在模拟时结果失真明显的问题。为此,在考虑刚度退化规律的基础上进行分析模拟,研究地震冲击下钢筋混凝土框架结构的恢复性。提取地震作用下钢筋混凝土框架结构滞回曲线,通过有限元分析获取不同的特征点,形成恢复力模型的骨架曲线;依据恢复力模型骨架曲线和刚度退化规律,构建滞回曲线,模拟地震作用后钢筋混凝土框架结构恢复过程。在模拟的钢筋混凝土框架结构恢复实验中,层间位移结果低于5 mm、层间绝对加速度和柱底抬升结果的误差均低于0.1 mm;模拟得到结构的弯矩缝隙都能够实现闭合,钢筋混凝土结构未出现屈服现象,说明模拟的结果较好。  相似文献   

15.
基于能量平衡原理,对多层钢筋混凝土框架结构的地震输入能量的分布及耗散规律进行了研究。选用8条天然地震波和2条人工波,运用Perform-3D软件,对多层钢筋混凝土框架结构模型在7度罕遇地震作用下的弹塑性能量进行数值仿真计算。计算了钢混框架结构在不同地震波下的地震总输入能量、滞回耗能、阻尼耗能以及滞回耗能占总耗能的比例时程,分析了地震能量在各分量中的分布及分配规律;分析了阻尼比和延性比对地震输入能量的影响,确定了滞回耗能随阻尼比和延性比的变化规律;研究了钢筋混凝土框架结构梁柱构造和竖向侧移刚度变化对地震输入能及其分量的影响,确定了多层钢筋混凝土框架结构滞回耗能沿竖向的分布规律及沿横向在框架构件中的分配,研究了框架结构存在薄弱层情况下的滞回耗能的分布规律。揭示了多自由度钢筋混凝土框架结构地震输入能量及其分布规律,可为基于能量平衡原理的抗震设计理论在工程实际中的运用提供有益的参考。  相似文献   

16.
本文通过能量法研究了钢筋混凝土简体结构的抗震性能。文中采用振型分解法按等效单自由度体系求解简体结构的滞回输入能;用pushover法分析了滞回耗能在结构层间的分布规律及结构自身的耗能能力;根据楼层滞回耗能与弹塑性层间位移的关系求出了薄弱层的弹塑性位移。对一高层钢筋混凝土框架-简体结构在7度罕遇地震下的抗震性能进行了评估,通过与非线性动力时程分析的对比,证明了方法的可行性。  相似文献   

17.
利用超弹性SMA螺栓梁柱节点的耗能能力和自复位特性,将其引入到耗能跨而构建"自复位耗能跨",基于既有的节点试验研究结果对结构体系的滞回性能进行了探讨。在此基础上,以具有旗形滞回特征的单自由度体系为工具,对配置自复位耗能跨低多层钢框架体系的能量系数进行推导。能量系数可以合理量化具有旗形滞回规则结构的峰值响应需求,能量系数越低,表明地震动下结构的峰值响应越低。为了阐明滞回参数对能量系数的影响,对具有不同滞回参数组合可代表低多层结构的等效SDOF体系进行了非线性动力分析,参数组合包括周期、屈服后刚度比、延性系数及能量比。同时对能量系数的离散性也进行了分析。结果表明:能量系数及能量系数的离散性受结构周期、屈服后刚度比及延性系数影响较大,受能量比的影响较小。  相似文献   

18.
增量动力分析(IDA)是一种用于结构抗震性能评估的参数分析方法。通过分析IDA曲线,可更全面地了解结构的地震需求、刚度退化、强度退化与地震动强度的关系。基于转换结构抗震性能差的问题,在转换层处设置耗能腋撑,以普通和带耗能腋撑钢筋混凝土框架转换结构为研究对象,对其进行增量动力分析,评估普通与带耗能腋撑钢筋混凝土转换结构的抗震性能。分析表明,耗能腋撑能有效地降低转换层处的地震反应,不同工况下的最大层间位移角减幅为20%~60%,最大层间位移角均值曲线在转换层处的突变得到减缓。普通与带耗能腋撑钢筋混凝土框架转换结构对应"基本完好"和"防止倒塌"性能水准的层间位移角限值分别为1/850、1/100与1/720、1/80,均小于高规规定框架结构在相应性能水准下的层间位移角限值1/550和1/50。普通与带耗能腋撑钢筋混凝土框架转换结构无法满足"大震不倒"的要求,需要调整耗能腋撑的参数以满足规范要求。  相似文献   

19.
为了研究剪切型金属阻尼器的耗能特性和减震效果,进行了加劲类和夹板类剪切型阻尼器的减震性能试验,分析了剪力-剪切位移关系滞回曲线。采用ABAQUS程序建立了两种剪切型阻尼器的理论分析模型,并用试验结果验证了有限元分析模型的正确性。应用SAP2000程序进行了4层钢筋混凝土框架结构的非线性弹塑性时程分析,获得了不同地震动作用下顶层位移响应曲线和层间位移曲线,揭示其耗能特性和减震效果。研究结果表明:剪切型阻尼器抗震性能良好;通过校舍教学楼应用算例,表明采用剪切型阻尼器可以明显减小层间位移,降低梁柱破坏程度,从而实现耗能减震。研究成果将为金属阻尼器的科学研究和工程应用提供参考依据。  相似文献   

20.
为了研究耗能段与RC框架梁采用不同连接节点形式对Y形偏心钢支撑RC框架结构滞回性能的影响,进行了2榀1/3缩尺Y形偏心钢支撑RC框架的低周反复荷载试验。介绍了试验过程,分析了试件在循环荷载作用下的破坏机理、滞回性能、延性、刚度退化规律以及耗能能力。试验结果表明:应用Y形偏心钢支撑加固RC框架合理可行,Y形偏心钢支撑承担了结构80%以上的水平荷载;U型外包钢与框架横梁连接的试件连接节点承载能力较高,耗能段耗能充分,结构的滞回曲线饱满;钢板与框架横梁底部连接的试件滞回曲线捏缩,耗能段耗能不充分,结构整体耗能能力差;U形外包钢与框架横梁连接的试件,耗能段破坏导致结构失效;钢板与框架梁底部连接的试件,连接节点破坏导致结构失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号