首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
As a typical Palaeozoic island arc system, the eastern Tianshan area, Xinjiang, is different from eastern China but similar to the Meso-Cenozoic island arc metallogenic provinces along the coast of the Pacific Ocean in metallogenic environment, geology and geochemistry. Three types of gold deposits, ductile shear zone-hosted gold deposits (Kanggur ), magmatic hydrothermal gold deposits (Jinwozi) and volcanic- or subvolcanic-hosted gold deposits (Xitan and Mazhuangshan), have been identified in this area. Regionally, gold deposits are structurally controlled by the Kanggur Tag ductile shear zone, Shaquanzi fault, Hongliuhe fault and Yamansu fault. Generally, gold mineralization occurs in the transition zones from volcanic rocks to sedimentary rocks. The horizon bearing well-developed jasper is an important indicator for gold mineralization. Each of the three types of gold deposits has its distinctive metallogenic background and geological-geochemical characteristics.  相似文献   

2.
The Phanerozoic granitoid rocks include the Caledonian,Indosinian and Yenshanian granitoid rocks.The existence of Caledonian and Indosinian granites was evidenced by zircon U-Pb ages,The study of the characteristics of major,trace and rare-earth elements,isotopic composition and petrogenesis for the granitoid rocks has been made,The Caledonian and Indosinian granites were derived from partial melting of the Proterozoic basement rocks and the two tectonic activities were weak,The Yenshanian grantoid rocks were derived from mixing of mantle and crustal materials,It implies that the crustal accretion took place in Mesozoic time.  相似文献   

3.
南岭诸广山花岗岩体的多次侵入活动和某些地球化学特征   总被引:7,自引:0,他引:7  
The eleven successive magmatic activities of the southern mass of the Zhuguangshan granitic batholith can be divided into four intrusive episodes: Calidonian, Late Hercynian, Yenshanian and one of younger age, based on intrusive contact observations in the field, isotope ages and petrological-geochemical evidences, Genetically, rocks of each of the four episodes have their own features. The Yenshanian granites are characterized by a strong tendency toward differenciation. Variation in oxygen fugacity and in lithofacil character of the rocks indicates that the two earlier phases of the Yenshanian granites are emplaced in greater depth in a tectonick stable environment,while the later two phases are of relatively hypobyssal character under more active geological conditions.  相似文献   

4.
In this study, we report U–Pb and Lu–Hf isotopic data for zircons from the Mesozoic sandstones of the Upper Yangtze area, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution of the Upper Yangtze block. The results of isotopic chronology indicate the following: (1) The provenances of the study area are very complex, and the tectonic evolution process is relatively closed. (2) The provenances are mainly Archean–Proterozoic crystalline basement or recycled material; Paleoproterozoic crustal accretion in the western margin of the Yangtze block and Neoproterozoic magmatic activities related to subduction of the western margin of the Yangtze block; early Cambrian oceanic magmatic activity, which resulted from the intraplate extension of the northern margin of the Yangtze block; late Ordovician–early Silurian magmatic activity in the northern Yangtze block and Hercynian–Indochina uplift and erosion during the Hercynian movement. (3) The Yangtze crustal growth is episodic, and an increasing amount of ancient recycled material became part of the magmatic activity, as the zircon U–Pb ages are relatively young.  相似文献   

5.
In North Xinjiang there is an alkali granite belt extending in the NW-SE direction along the southern band of the Ulungur River and running parallel to the suture zone,i.e.,Aermantai-Zhaheba Ophiolitic Melange Zone ,between the Junggar Plate and the Altay Orogenic Belt.Whole -rock Rb-Sr isochron ages of the Ulungur alkali granites are within the range of 292-309Ma, showing that they were genetically connected with the latest episode of Hercynian magmatism subsequent to the syncollision S-type and post-collision uplifting I-type granitoids in the Altay region .The alkali granites are miner-alogically characterized by the occurrence of aegirine and arfvedsonite and chemically by high silicon and alkali,low calcium and magnesium and abundant high-field elements, being typical A-type granites .The alkali granites were formed in the final stage of the Hercynian calc-alkaline magmatic cycle in a very short period of time .They are in line with the post-orogenic A-type(PA-type)granites, implying that the tectonic regime was changed from compression to extension.  相似文献   

6.
The Feidong district is located in the southern segment of the Tan–Lu fault zone that separates the South China Block (NCB) from the North China Craton (NCC). We report zircon U-Pb geochronology and Hf isotope data, as well as whole-rock geochemistry for Xishanyi granodiorite and Jianshan granite in the Feidong district. Zircon U-Pb dating results show that the emplacement ages of the Xishanyi and Jianshan intrusions are 124 ± 3 Ma and 130 ± 1 Ma respectively, coeval with magmatic events linked to large-scale lithospheric thinning in eastern China. The whole-rock geochemistry of the Xishanyi and Jianshan intrusions demonstrate that they are peraluminous, high potassium calc-alkaline I-type granites with adakitic characteristics. Both intrusions underwent weak crustal assimilation during emplacement. The in situ zircon εHf(t) values of the Xishanyi granodiorites range from ?26.4 to ?21.8, with TDM2 model ages of 2552 to 2841 Ma. The in situ zircon εHf(t) values of the Jianshan granite are from ?27.5 to ?23.0 with TDM2 model ages of 2632 to 2904 Ma. The peak age of inherited zircon grains from the Xishanyi granodiorite and the Jianshan granite were ~2.07 Ga and ~1.94 Ga, respectively. After compared with the regional magmatism, we suggest that both the Xishanyi and Jianshan granitoid intrusions were derived from partial melting of the NCC lower crust.  相似文献   

7.
The Longquanguan shear zone is an important structural belt in the North China Craton, separating the underlying Fuping complex from the overlying Wutai complex. This shear zone has experienced three episodes of deformation: the first and main episode is a ductile top-to-ESE shear along the gently northwest-west dipping foliations, while the other two episodes are later collapse sliding. Prolonged granites parallel to the shear foliations make one of the main compositions of the Longquanguan shear zone. These granites experienced deformation to form mylonitic rocks when they emplaced during the first episode of deformation. Structural characters of the granites and their contacts to the country rocks indicate that these granites possibly resulted from in-situ partial remelting by shearing, i.e., they are syn-deformational granites. Monazites in these mylonitic granites are magmatic minerals and their crystallization ages may represent ages of the magmatic events, and also the ages for the main deformation of the Longquanguan shear zone. Monazite electronic microprobe dating were carried on two samples of granite, which gives multiple peak ages, among which 1,846 Ma and 1,877 Ma are the main peak ages for the two samples. These ages represent the main deformation of the Longquanguan shear zone, which is consistent with the main regional geological event at about 1,850 Ma caused by the collision between the Eastern and Western Blocks in North China. The good match between the monazite ages and the corresponding regional tectono-thermal events shows the feasibility and reliability of monazite electronic microprobe dating.  相似文献   

8.
The main types of intrusive rocks in the Kelameili-Harlik Hercynian erogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These ro  相似文献   

9.
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of multi-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xudong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area.  相似文献   

10.
西藏南部花岗岩类的岩石化学研究   总被引:2,自引:0,他引:2  
Based on 200 analytical data on granitoid rocks in this region, the average chemical composition has been calculated by the area weight method for various granitoid rocks of different episodes and different stages, as well as for different petrographical belts and the whole region. The origins of various types of granitoid rocks are discuesed, too.  相似文献   

11.
The Early-Middle Devonian Shugouzi Formation in the Quruqtagh block consists mainly of clastic rocks.However,their provenance has been scarcely studied since it was named.Geochemistry of clastic rocks was commonly used to interpret the provenance.Detrital heavy mineral analyses help frame the U-Pb age from zircon grains,integrated with geochemical data from detrital tourmaline and spinels.These techniques were used to characterize components of the sediment flux and define erosion areas in the Qurugtagh block,further providing evidence about the tectonic evolution of the South Tianshan and Tarim plate.The maximum depositional age constrained by detrital zircon dating was Early-Middle Devonian.Multiple diagrams for sedimentary provenance using major and trace elements indicate that continental island arc-related felsic rocks were the major source rocks for the Shugouzi Formation.Detrital tourmalines are dravite and schorl.The results of detrital tourmaline electron probe microanalysis(EPMA)show that the source rocks are mainly metasedimentary rocks and granitoids.The detrital chromian spinels within the sediments are characterized by high chroumium(Cr#)and varying magnesium(Mg#).The discrimination plots reveal that these spinels were sourced from island arc magmatic rocks.The laser ablation inductively-coupled plasma mass spectrometry(LA-ICP-MS)U-Pb chronology of detrital zircons suggests that the sediments were derived mainly from 414-491 Ma and 744-996 Ma magmatic rocks.Paleocurrent restoration,sandstone geochemistry,EPMA,and detrital zircon geochronology indicate that the source rocks were predominantly derived from Late Ordovician and Devonian magmatic rocks and subordinately from recycled Neoproterozoic magmatic rocks.Comprehensive analyses of the source areas suggest that a remnant arc still existed in the Early Devonian and the Shugouzi Formation was deposited in a passive continental margin.  相似文献   

12.
The Baimazhai nickel deposit, Yunnan Province, China, is located in the southern part of the Sanjiang (Tri-river) alkali-rich intrusive rock belt (Sanjiang ARIR). In this paper was conducted ^40Ar-^39Ar dating of two phlogopites in lamprophyres which are, as dikes, widely distributed in the orefield, and two plateau ages were acquired, i.e., 32.46±0.62 Ma and 32.01±0.60 Ma, respectively (averaging 32.23±0.60 Ma). The ages are obviously younger than those of the ore-hosted complex and mineralization of the Baimazhai nickel deposit. In combination with the characteristics, it is indicated that lamprophyres in the orefield and those in the Sanjiang ARIR are similar in tectonic setting, mineral assemblage and geochemistry. It is considered that lamprophyres in the orefield are the important component of the Sanjiang ARIR, and the lamprophyres and ore-hosted complex in the orefield represent the products of two times of different magmatic activity from different mantle sources. On the other hand, the age of lamprophyres in the orefield is older than that of the strike-slip shearing of the Ailaoshan-Honghe fault belt, suggesting that the strike-slip shearing of the Ailaoshan-Honghe fault belt is not the factor leading to magmatic activity of lamprophyres in the orefield, while it is more possible that magmatic activity of the Sanjiang ARIR promoted strike-slip shearing of the fault belt.  相似文献   

13.
The Baimazhai nickel deposit,Yunnan Province,China,is located in the southern part of the Sanjiang (Tri-river) alkali-rich intrusive rock belt (Sanjiang ARIR). In this paper was conducted 40Ar-39Ar dating of two phlogopites in lamprophyres which are,as dikes,widely distributed in the orefield,and two plateau ages were ac-quired,i.e.,32.46±0.62 Ma and 32.01±0.60 Ma,respectively (averaging 32.23±0.60 Ma). The ages are obviously younger than those of the ore-hosted complex and mineralization of the Baimazhai nickel deposit. In combination with the characteristics,it is indicated that lamprophyres in the orefield and those in the Sanjiang ARIR are similar in tectonic setting,mineral assemblage and geochemistry. It is considered that lamprophyres in the orefield are the im-portant component of the Sanjiang ARIR,and the lamprophyres and ore-hosted complex in the orefield represent the products of two times of different magmatic activity from different mantle sources. On the other hand,the age of lamprophyres in the orefield is older than that of the strike-slip shearing of the Ailaoshan-Honghe fault belt,sug-gesting that the strike-slip shearing of the Ailaoshan-Honghe fault belt is not the factor leading to magmatic activity of lamprophyres in the orefield,while it is more possible that magmatic activity of the Sanjiang ARIR promoted strike-slip shearing of the fault belt.  相似文献   

14.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

15.
During the 1:50000 regional geological survey in Jimo,east Shandong Province,Paleoproterozoic metamorphic supracrustal rocks and Neoproterozoic metamorphic plutonite were newly discovered. These rocks displayed inclusions which had occurred in the Mesozoic granite,and the main lithologies are schist,granulite,marble,and granitic gneiss. Geochemical analyses suggest that Neoproterozoic metamorphic plutonite are characterized by high-K,metaluminous to weakly peraluminous. They are enriched in LILE and depleted in HFSE,with moderately enrichment of LREE,weak fractionation of LREE from HREE and negative Eu anomalies. The surface age of plutonic rocks in the survey area is 770.2±2.4 Ma,representing the age of magma crystallization,which is agreement with the the Neoproterozoic magmatic event after Rodinia supercontinent in the northern margin of Southern China continental block. In addition,the age of sporadic distribution(298 Ma and 269 Ma) is mixed zircon age,representing the rocks experienced metamorphism in Indosinian period. According to the associated mineral assemblages,and the characteristic metamorphic minerals and temperature pressure conditions,four metamorphic facies were identified,including amphibolitic,epidote amphibolite,greenschist,and mid-high pressure greenschist. Analysis of tectonic setting suggests that granitic gneiss is formed in an extensional environment and was involved from the continental margin magmatic arc to intraplate environment. Jimo is distributed in the east of Zhuwu fault,and has the same Spatial distribution location with the Weihai uplift UHP metamorphic belt rocks. The metamorphic rocks in Jimo area have similar geochemical characteristics of elements,tectonic setting and retrograde metamorphism with that in the Sulu UHP metamorphic belt. Therefore,Zhuwu fault may be the boundary fault of Sulu UHP metamorphic belt.  相似文献   

16.
The uranium-bearing granites in South China can be classified into two types. namely, syntectic type andtransformation type. A fairly systematic hydrogen, oxygen. carbon, sulfur isotopic study of uranium depositsrelated to these two types of granites has been carried out by the authors, and the results show that they haveobvious differences in such aspects as ore-forming and rock-forming ages. properties of ore-forming solutionsand source of ore-forming substances. The authors hold that the uranium deposits related to the syntectic typegranitoids are intimately connected with magmatism in time and space, whereas the uranium deposits relatedto the transformation type granites, though spatially linked up with uranium-bearing granites, should actuallyowe their formation to extension in the fault block movement in South China.  相似文献   

17.
There is a controversy regarding the amalgamation of Xing'an and Songnen Blocks along the Hegenshan-Heihe Suture(HHS) in the eastern Central Asian Orogenic Belt(CAOB). To solve this problem, we performed detailed study on the granites from the Zhangdaqi area, adjacent to the north of the HHS in the northern part of the Great Xing'an Range, NE China. Geochemically, the granites in the study area are metaluminous-weak peraluminous and high-K calc-alkaline series. Trace elements of the granites show that LREEs are relatively enriched, while HREEs are relatively deficient and obvious REE fractionation. The granites are characterized by obvious negative Eu anomalies, meanwhile, they are relatively enriched in Rb, K, Th and depleted in Ba, Nb, Sr, P, Ti. All the geochemical features suggest that the granites in the Zhangdaqi area are aluminum A-type granites. The zircon LA-ICP-MS U-Pb ages of these granites are 294–298 Ma, indicating that they formed in the Early Permian. These granites also have positive ε_(Hf)(t) values(8.4–14.2) and a relatively young two-stage model age between 449 Ma and 977 Ma, implying that the magma was derived from the re-melting of the Early Paleozoic-Neoproterozoic juvenile crust. Combined with geochemical characteristics(Nb/Ta ratios of 9.0–22.2, and Zr/Hf ratios of 52.3–152.0), we believe that the magmatic source area is a mixture of partial melting of the lower crust and depleted mantle. A-type granites and bimodal volcanic rocks along the Hegenshan-Heihe Suture formed during the Late Carboniferous-Early Permian, indicating that the HHS between Xing'an and Songnen Blocks closed in the late EarlyCarboniferous. Subsequently, the Zhangdaqi area was in a post-orogenic extensional environment from Late Carboniferous to Early Permian and resulted in the formation of the A-type granites.  相似文献   

18.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

19.
The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.  相似文献   

20.
The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bearing quartz-polymetallic sulfides veins. The Mapeng granitoids stock and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially related to gold mineralization. Detailed laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) U-Pb zircon ages of the granitic rocks, dykes and mineralized quartz veins in the studied area reveal its magmatic and mineralized history. The mineralized quartz veins contain inherited zircons with ages of about 2.55 Ga and 1.84 Ga, probably coming from the basement. These two Precambrian events are coeval with those in other parts of the NCC. The Mapeng granitoid stock, the largest intrusion in the area, was emplaced at ca. 130 Ma, and is coeval with magmatic zircon populations from diorites and quartz diorite pophyrites in the same region. The ca. 130 Ma magmatism and gold mineralization were most likely related to an underplating event that took place in the Taihang orogen at Late Mesozoic. The timing of gold mineralization with respect to felsic magmatism in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern margin of NCC, indicative of a widespread late Yanshanian metallogenic event that was a response to the Early Cretaceous lithosphere in the eastern NCC, in which the mesothermal gold deposits were formed from similar tectono-magmatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号