首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   

2.
We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection–diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.  相似文献   

3.
The observation that high speed solar wind streams are correlated with outer radiation belt electrons requires a transducer to convert this mechanical energy to hot electrons. We hypothesize that the high latitude cusp is the ideal location for this acceleration region. We support this hypothesis with two arguments: a forward model to show that the cusp can theoretically accelerate electrons to MeV energies which then are transported to the radiation belts; and, a backward model that deduces a cusp source based on empirical properties of the radiation belt MeV electrons. Accordingly, in the first half we apply the trapping properties of the static equinoctal cusp to deduce the dynamical response of interplanetary transients; in the second half we analyze several peculiar statistics of MeV electron correlations with solar wind as the response of a non-linear, multi-parameter dependence on the solar wind driver. Our model would permit the formulation of more physically accurate MeV electron predictors, which we demonstrate by connecting physical explanations to several empirical predictors recently published.  相似文献   

4.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

5.
地球同步轨道高能电子变化   总被引:1,自引:0,他引:1       下载免费PDF全文
结合小波分析及交叉小波分析方法,研究了地球同步轨道高能电子动态变化的多时间尺度结构,分析了电子通量在不同周期随着太阳风速、地磁指数Dst变化的具体特点.结果发现:(1)电子通量的长期变化受控于太阳风速,在太阳活动低值年,电子通量值高,具有明显的13.4天,27.4天及187天周期;交叉小波分析表明,电子通量的13.4天及27.4天周期受太阳风速周期变化信号的影响,187天周期变化受Dst指数周期变化信号的影响.(2)电子通量半年变化主要归因于太阳风的驱动作用,在每年的第100天及270左右达到两次峰值,峰值大小不对称,与Dst指数的谷值大小呈反比.(3)由于冕洞形成过程中的太阳风高速流影响,电子通量具有13.4及27.4天的周期,峰值水平受控于太阳风速结构.  相似文献   

6.
太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,如能准确预报SEP事件,人们便可以采取必要的防护措施,保障卫星、星载设备以及航天员的安全,尽可能地降低经济损失.因此,其数值预报研究在空间天气预报研究中占有很重要的地位.SEP事件中的高能粒子在不同的时间尺度内被耀斑过程或者CME驱动的激波加速,并且在被扰动后的行星际太阳风中传输,这些过程都紧紧依赖于太阳风背景场.因此获取更加接近物理真实的太阳风背景场是模拟SEP事件的重要部分,也是提高SEP物理模式的关键因素之一.我们目前的工作基于张明等发展的SEP在行星际空间传播的模型,尝试将Parker太阳风速度解及WIND飞船观测的磁场实时数据融入模型中,研究不同的太阳风速度以及真实磁场分布对SEP在行星际空间中传播的影响.通过求解聚焦传输方程,我们的模拟结果表明:(1)快太阳风条件下,绝热冷却效应项发挥了更大的作用,使粒子能量衰减的更快,而慢太阳风对粒子的通量变化没有显著影响;(2)加入观测的磁场数据时,粒子的全向通量剖面发生了比较明显的变化,具体表现在:通量峰值推迟到达、出现多峰结构、各向异性也发生一些改变.分析表明真实磁场的极性对粒子在行星际空间中传播有着重要的影响.  相似文献   

7.
High-performance computational models are required to make the real-time or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolution of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements from spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.  相似文献   

8.
地球外辐射带是一个高度动态变化的空间环境,辐射带电子通量的变化在磁暴期间尤为明显.要分析潜在的电子动态变化机制,需要排除绝热效应产生的影响.在以三个绝热不变量组成的相空间坐标中,利用相空间密度(PSD)可以反映电子的真实加速和损失情况.本文详细分析两颗范艾伦卫星和三颗GPS导航卫星在2013年3月的同步电子通量观测数据,发现在3月17日磁暴期间,当太阳风动压增大、行星际磁场南向时,辐射带电子通量会发生骤降.进一步将电子通量转换成电子相空间密度并利用不同第一、第二绝热不变量(μ,K)组合条件下PSD径向分布的差异性,深入探究磁暴期间辐射带电子的动态变化机制.结果表明:磁暴初期由于电子的局地加速导致PSD不断上升;磁暴主相期间,由于磁层顶阴影效应以及伴随的向外径向扩散损失导致PSD快速降低;位于不同空间位置的多颗卫星观测为明晰辐射带电子动态物理过程提供了重要的便利.  相似文献   

9.
10.
While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness, less known is the fact that the Russell–McPherron (R–M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R–M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994–2006. Equinoctial interfaces were separated into four classes based on the R–M effect, that is, whether the solar wind on either side of the interface was either (geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI, and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface. We conclude that the R–M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.  相似文献   

11.
The influence of helio/geophysical factors on the solar energy input to the lower atmosphere has been studied at the network of actinometric stations of Russia in different latitudinal belts. It was found that there are appreciable changes in the half-yearly values of total radiation associated with galactic cosmic ray (GCR) variations in the 11-yr solar cycle, the increase of GCR flux being accompanied by a decrease of the total radiation at higher latitudes and by its increase at lower latitudes. Auroral phenomena and solar flare activity are likely to affect the solar radiation input to the high-latitudinal belt together with GCR variations, the increase of both these factors resulting in the decrease of total radiation. The changes found in the total radiation fluxes in the lower atmosphere seem to be related to the cloud cover variations associated with the solar and geophysical phenomena under study. The variations of the solar radiation input in the 11-yr-cycle amounting to ±4–6% may be an important factor affecting tropospheric dynamics.  相似文献   

12.
冕洞是太阳风高速流的源区.当冕洞出现在中低纬区域时,太阳风高速流会扫过地球并引发地球空间环境扰动,如地磁暴和高能电子暴等.在太阳活动周下降年和低年,这种类型的扰动占据主导地位.因此,冕洞高速流的到达时间、峰值时间、峰值强度和持续时间等,是空间天气预报的重要内容.本文基于2010年5月到2016年12月的SDO/AIA太阳极紫外图像以及1AU处ACE和WIND卫星的太阳风观测数据,确定了160个冕洞-太阳风高速流事件,定量计算了他们的特征参数,包括冕洞与太阳风高速流的开始时间、峰值时间、峰值强度和结束时间,分析了各个特征参数的分布规律,对冕洞-高速流之间的关系进行了统计研究,并提出了一种新的预报方法,为基于冕洞成像观测的太阳风高速流的精准预报提供了依据.  相似文献   

13.
为研究近期21年(1989—2009年)北极地区海冰变化原因,本文利用欧洲中期天气预报中心ERA-Interim数据集资料和美国麻省理工学院MITgcm全球海冰-海洋耦合模式开展了不同大气强迫条件下海冰变化的数值模拟研究.研究工作中共设计了6个数值试验,除1个试验全部采用1989—2009年每日4个时次的大气强迫场外,其余5个试验各有一种大气强迫(地表气温、地表大气比湿、向下短波辐射通量、向下长波辐射通量和地表风)采用1989年月平均结果.分析了各模拟试验结果中3月和9月北极地区海冰面积的年际变化特征及最小二乘拟合意义下的线性变化趋势,并以ERA-Interim结果为参照标准对各模拟试验结果进行了对比和检验,以说明不同大气强迫量变率对海冰变化的作用.结果表明:地表气温变率和向下长波辐射通量变率是造成海冰面积减少的主要原因;向下短波辐射通量变率对海冰面积变化影响几乎可以忽略;地表大气比湿变率对海冰面积线性变化趋势影响较小,但对海冰面积年际变化特征有调制作用;地表风变率对海冰季节变化、海冰面积线性变化趋势及年际变化特征均有明显影响,说明提高大气风应力精度是改善海冰数值模拟结果的重要手段.  相似文献   

14.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   

15.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

16.
It has been recognized that there are three basic physical agents, namely (i) electromagnetic radiation, (ii) high-energy charged particles, and (iii) enhanced solar wind, resulting from solar activity, which affect the near-Earth and terrestrial environment. In this paper, we restrict our discussion to the subject of the enhanced solar wind. In this context, it is well-known that the most appropriate tool to investigate the generation and propagation of solar disturbances is magnetohydrodynamic (MHD) theory. The most recent progress during the period of the Solar Terrestrial Energy Program (STEP) in these aspects will be presented. In particular, the induced transport of momentum and energy, by coronal mass ejections (CMEs), from the solar surface to the Earths environment (i.e. at 1 AU) will be illustrated by using a self-consistent MHD model of streamer and flux-rope interactions.  相似文献   

17.
18.
The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.  相似文献   

19.
A study of 19 months of data shows that relative variations in the dayside lunar ionosphere are predictable from solar wind flux and solar extreme ultraviolet variations. Discrepancies in the absolute magnitudes exist, however. One significant discrepancy in the predicted and observed ion flux magnitudes probably arises from sputtered surface gases during and following an extended period of anomalously high solar wind flux. A second minor enhancement of the observed flux over the predicted flux may be due to endogenous lunar gas associated with an interval of high lunar seismic activity. However, considerable restraint is necessary in this interpretation since the enhancement is not strong and the interval follows within a few months after the Apollo-17 mission.  相似文献   

20.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号