首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study, an attempt has been made to evaluate the temporal variations in specific stream power and the total energy available for geomorphic work during the monsoon season for the Tapi River, in central India. Continuous daily discharge data (1978–1990), hydraulic geometry equations and the relationship between discharge and water surface slope were used to compute the daily specific stream power (ω) for the Savkheda gauging site in the lower Tapi Basin. The total amount of energy generated by all the monsoon flows was estimated by integrating the area under the ω-graph derived for the monsoon season.The analyses of the 13-year daily discharge data reveal that the average and maximum ω values range from 4–20 W m− 2, and 22–964 W m− 2 respectively. Specific stream power duration curve derived for the site shows that for 25% of the time the power per unit area is > 10 W m− 2. Furthermore, unit stream power was found to be above the Williams' [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] threshold of pebble-movement (1.5 W m− 2), cobble-movement (16 W m− 2) and boulder-movement (90 W m− 2) for 71%, 15% and 2% of the time, respectively. Computations further indicate that the total amount of energy generated by the flows during the monsoon season is in the range of 37 MJ (deficit monsoon years) to 256 MJ (excess monsoon and/or flood years). Large floods have one-third share in the total monsoon energy expenditure. In the absence of appropriate data on the yearwise geomorphic effects, the geomorphic work was evaluated in terms of the total suspended sediment load transported. The total monsoon sediment load is strongly related to the total monsoon energy. The results of the study indicate that the average flow competence and capacity are remarkably higher during wetter monsoon seasons and flood years than during the shorter and drier monsoon seasons.The present analyses demonstrate that the flows are geomorphically effective for a greater part of the monsoon season, except during the deficient monsoon years, and there is little doubt that large-magnitude floods are effective agents of geomorphic change in monsoonal rivers.  相似文献   

2.
Oliver Korup   《Geomorphology》2005,66(1-4):167
Quantitative assessments of landslide hazard usually employ empirical, heuristic, deterministic, or statistical methods to derive estimates of magnitude–frequency distributions of landsliding. The formation and failure of landslide dams are common geomorphic processes in mountain regions throughout the world, causing a series of consequential off-site hazards such as catastrophic outburst floods, debris flows, backwater ponding, up- and downstream aggradation, and channel instability.Conceptual and methodological problems of quantifying geomorphic hazard from landslide dams result from (a) aspects of defining “landslide-dam magnitude”, (b) scaling effects, i.e. the geomorphic long-range and long-term implications of river blockage, and (c) paucity of empirical data. Geomorphic hazard from a landslide dam-break flood on the basis of conditional probabilities is being analysed for the alpine South Westland region of New Zealand, where formation and failure of landslide dams is frequent. Quantification of the annual probability of landsliding and subsequent dam formation in the area is limited by historical and only partially representative empirical data on slope instability. Since landslide-dam stability is a major control governing the potential of catastrophic outburst flooding, the ensuing hazard is best assessed on a recurring basis. GIS-based modelling of virtual landslide dams is a simple and cost-effective approach to approximate site-specific landslide dam and lake dimensions, reservoir infill times, and scaled magnitude of potential outburst floods. Although crude, these order-of-magnitude results provide information critical to natural hazard planning, mitigation, or emergency management decisions.  相似文献   

3.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

4.
Complexity in a cellular model of river avulsion   总被引:2,自引:1,他引:2  
We propose a new model of river avulsion that emphasizes simplicity, self-organization, and unprogrammed behavior rather than detailed simulation. The model runs on a fixed cellular grid and tracks two elevations in each cell, a high elevation representing the channel (levee) top and a low one representing the channel bottom. The channel aggrades in place until a superelevation threshold for avulsion is met. After an avulsion is triggered a new flow path is selected by steepest descent based on the low values of elevation. Flow path depends sensitively on floodplain topography, particularly the presence of former abandoned channels. Several behavioral characteristics emerge consistently from this simple model: (1) a tendency of the active flow to switch among a small number of channel paths, which we term the active channel set, over extended periods, leading to clustering and formation of multistory sand bodies in the resulting deposits; (2) a tendency for avulsed channels to return to their previous paths, so that new channel length tends to be generated in relatively short segments; and (3) avulsion-related sediment storage and release, leading to pulsed sediment output even for constant input. Each of these behaviors is consistent with observations from depositional river systems. A single-valued threshold produces a wide variety of avulsion sizes and styles. Larger “nodal” avulsions are rarer because pre-existing floodplain topography acts to steer flow back to the active channel. Channel stacking pattern is very sensitive to floodplain deposition. This work highlights the need to develop models of floodplain evolution at large time and space scales to complement the improving models of river channel evolution.  相似文献   

5.
An expert-based approach was used to identify 10 morphological unit types within a reach of the gravel bed, regulated Yuba River, California, that is heavily utilized by spawning Chinook salmon (Oncorhynchus tshawytscha). Analysis of these units was carried out using two-dimensional hydrodynamic modeling, field-based geomorphic assessment, and detailed spawning surveying. Differently classified morphological units tended to exhibit discrete hydraulic signatures. In most cases, the Froude number adequately differentiated morphological units, but joint depth–velocity distributions proved the most effective hydraulic classification approach. Spawning activity was statistically differentiated at the mesoscale of the morphological unit. Salmon preferred lateral bar, riffle, and riffle entrance units. These units had moderately high velocity (unit median > 0.45 m s− 1) and low depth (unit median < 0.6 m), but each exhibited a unique joint depth–velocity distribution. A large proportion of redds (79%) were associated with conditions of convective flow acceleration at riffle and riffle entrance locations. In addition to reflecting microhabitat requirements of fish, it was proposed that the hydraulic segregation of preferred from avoided or tolerated morphological units was linked to the mutual association of specific hydraulic conditions with suitable caliber sediment that promotes the provision and maintenance of spawning habitat.  相似文献   

6.
Experiments with marked pebbles were carried out on different sized rivers of the Belgian Ardenne (catchment areas varying from less than 1 km2 to 2700 km2). Specific stream power required to cause bedload movement was evaluated and critical values were obtained. Three types of relationship between critical specific stream power (ω0) and grain size (D) were established. The values for ω0 in the largest river (the Ourthe) were the lowest and were close to the values obtained for mountainous rivers carrying large boulders. In medium sized rivers (catchment area between 40 and 500 km2), the critical unit stream power was higher. It is likely that it is due to the bedform's greater resistance. This resistance would use up some of the energy that can cause movement and transport of bedload. The amount of resistance of the bedform can be expressed as bedform shear stress (τ″), determined by the relationship between grain shear stress (τ′—that determines movement and transport of the bedload) and the total shear stress (τ). This ratio varies between 0.4 and 0.5 in the medium sized rivers, compared to 0.7 in the Ourthe. In headwater streams (less than 20 km2), there is greater loss of energy due to bedform resistance (τ′/τ<0.3). Critical specific stream power is higher in this third type of river than in the other two.  相似文献   

7.
Timothy P. Hanrahan   《Geomorphology》2007,86(3-4):529-536
While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwest region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bedform types at the pool–riffle scale. A bedform differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool–riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool–riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (χ2 = 57.5, df = 3, p < 0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at elevations greater than 80% of the difference in elevation between the nearest riffle crest and pool bottom. The analyses of bedform morphology will assist regional fish managers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.  相似文献   

8.
This paper discusses the self-affinity dimensions of landscape surfaces at a short-range scale and the link to morphotectonic features of the young orogenic belts of Taiwan. The variogram method is adopted to estimate such parameters as the fractal dimension (D), the ordinate-intercept (γ) and the range (R) from data subsets of the digital elevation model (DEM) in a moving-window operation. The fractal morphology expressed by D and γ is found to be useful in defining geomorphic provinces that are related to tectonic features. The mountainous terrain is characterized by high gamma values and low fractal dimensions in contrast to the coastal plains where low gamma values and high fractal dimensions are found. A zone, defined by the fractal parameters (2.4<D<2.6 and 0<γ<2.4), is found to coincide with the most tectonically active zone of Taiwan. Active faults often occur at the boundary between landscapes with contrasting fractal patterns. In the flat lowlands along the western coast, the fractal morphology displays a west-facing amphitheatric pattern, which may be related to the indentation of the pre-Miocene Peikang Basement High. The fractal morphology may reflect some subtle changes in surface textures of a landscape sculpted by surface processes, which in turn are influenced by tectonic activities. The surface roughening and diffusive smoothing may concur to shape the landscape surface at the short ranges we discuss in this study.  相似文献   

9.
Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges (“cheniers”) that have elevations of up to 4 m.In this study, the term “ridge” is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit.To understand the long-term evolution of a coastal depositional system, primary process–response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism (Ω) and quantity of littoral transport (Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed.Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299–306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits).A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level. Consequently, the geneses of three different ridge types (transgressive, regressive, and laterally accreted) typically occur contemporaneously along the same shoreline at different locations.  相似文献   

10.
While many studies have documented pathways of river degradation, few studies have assessed the character, capacity, and stages of river recovery. In this paper, a generic procedure to measure river recovery is developed and applied in Bega catchment, on the south coast of New South Wales (NSW), Australia. The approach is based on analysis of geomorphic units and ergodic reasoning. Historical data and field analyses are used to identify stages of river evolution throughout Bega catchment. From this, stages of river condition and pathways of adjustment are assessed for three river styles at different positions within the catchment. Five categories of river condition are identified. Intact reaches operate in a self-adjusting manner, whereby processes maintain the pre-disturbance geomorphic character of the reach. The processes occurring in restoration reaches maintain and enhance the geomorphic structure of the reach. These reaches are moderately resilient to change. The river has experienced degradation, but has recovered to a condition approximating its pre-disturbance character and behavior. Degraded reaches are still adjusting to disturbance and the processes of recovery have not yet begun. The river is experiencing progressive deterioration away from the structure and function of the pre-disturbance condition. Turning-point reaches are at the transitional stage where they can either recover or revert to a degraded state. Finally, a creation reach has a self-adjusting character and behavior but operates under altered catchment boundary conditions. The character and behavior of the river do not equate to pre-disturbance conditions; rather, the river is well adjusted to the prevailing catchment boundary conditions of water and sediment transfer, and vegetation cover and composition (among many factors). Once these conditions have been identified for each river style, all reaches in a catchment are placed on pathways of degradation and recovery, and predictions made about their direction of change. The three river styles analyzed in Bega catchment demonstrate differing recovery pathways. Some reaches are adjusting toward a restored condition, while others are adjusting toward a new (or creation) condition. The geomorphic recovery potential of each reach is determined by assessing the connectivity of reaches throughout the catchment and interpreting limiting factors to recovery (e.g., water and sediment transfer, vegetation and coarse woody debris [CWD] character and distribution). [Key words: geomorphic river condition, river recovery, river degradation, recovery potential, fluvial geomorphology, river management.]  相似文献   

11.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   

12.
Historical and modern scientific contexts are provided for the 2006 Binghamton Geomorphology Symposium on the Human Role in Changing Fluvial Systems. The 2006 symposium provides a synthesis of research concerned with human impacts on fluvial systems — including hydrologic and geomorphic changes to watersheds — while also commemorating the 50th anniversary of the 1955 Man's Role in Changing the Face of the Earth Symposium [Thomas, Jr., W. L. (Ed.), 1956a. Man's Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago. 1193 pp]. This paper examines the 1955 symposium from the perspective of human impacts on rivers, reviews current inquiry on anthropogenic interactions in fluvial systems, and anticipates future directions in this field.Although the 1955 symposium did not have an explicit geomorphic focus, it set the stage for many subsequent anthropogeomorphic studies. The 1955 conference provided guidance to geomorphologists by recommending and practicing interdisciplinary scholarship, through the use of diverse methodologies applied at extensive temporal and geographical scales, and through its insistence on an integrated understanding of human interactions with nature. Since 1956, research on human impacts to fluvial systems has been influenced by fundamental changes in why the research is done, what is studied, how river studies are conducted, and who does the research. Rationales for river research are now driven to a greater degree by institutional needs, environmental regulations, and aquatic restoration. New techniques include a host of dating, spatial imaging, and ground measurement methods that can be coupled with analytical functions and digital models. These new methods have led to a greater understanding of channel change, variations across multiple temporal and spatial scales, and integrated watershed perspectives; all changes that are reflected by the papers in this volume. These new methods also bring a set of technical demands for the training of geomorphologists. The 2006 Binghamton Geomorphology Symposium complements the 1956 symposium by providing a more specific and updated view of river systems coupled with human interactions. The symposium focuses on linkages between human land use, structures, and channel modification with geomorphology, hydrology, and ecology. The emergence of sustainability as a central policy guideline in environmental management should generate greater interest in geomorphic perspectives, especially as they pertain to human activities. The lack of theories of anthropogeomorphic change, however, presents a challenge for the next generation of geomorphologists in this rapidly growing subfield.  相似文献   

13.
In the Northern Campanian coastal zone, over 150 km long, three geomorphic units are recognised: (1) sandy beaches that are well developed in the northern area, where a prominent river mouth (Volturno River) is also present; (2) steep and rocky shores, often with gravelly beaches or debris cones at their base, are mainly diffuse in the southern area (Sorrentine Peninsula); and, lastly, (3) “techno coast”, shorelines stabilized with revetments and seawalls as well as former natural environments no longer clearly operational because of urbanization, as is visible in Naples and in the Vesuvian coast. Six primary hazards are considered in this investigation: shoreline erosion, riverine flooding, storms, landslides, seismicity and volcanism, and man-made structures. These hazards do not have a uniform distribution along this coast in terms of their frequency and intensity; moreover both their interaction and the intensive action of humans, often uncontrolled, makes it difficult to assess the overall coastal hazard. In this paper a semi-quantitative method with which to quantify, rank and map the distribution of hazard is applied along this particular stretch of coast. In such a stretch, previously characterized in terms of types and processes and compartmentalized into geomorphic units, the effect of individual hazards, based on their magnitude and recurrence, is evaluated. Dominant and subordinate hazards for each geomorphic unit are identified, assigning a rank that is also a weighting. Comparison of each weighting through an interaction matrix permits the calculation of a resultant, which is the overall hazard assessment and which can be expressed cartographically. The results obtained for a coastal zone with one of the highest pressures from urbanization in the world, help us to recognise that this approach could become a useful tool to aid decision-making regarding coastal land-use and planning.  相似文献   

14.
Theoretical regime equations for mobile gravel-bed rivers with stable banks   总被引:2,自引:1,他引:2  
Robert G. Millar   《Geomorphology》2005,64(3-4):207-220
A system of rational regime equations is developed for gravel-bed rivers with stable banks using the optimality theory (OT). The optimality theory is based on the premise that equilibrium river geometry is characterised by an optimum configuration, defined here as maximum sediment-transport efficiency. Theoretical dimensionless equations are derived for width, depth, slope, width/depth ratio, and meandering–braiding transition. Independent dimensionless variables comprise discharge, sediment concentration, and relative bank strength, μ′, which is defined as the ratio of the critical shear stresses for the bank and bed sediments. Discharge exponents and general form of the equations agree well with previously developed empirical relations. Relative bank strength, μ′, is used to parameterise the influence of riparian vegetation on bank strength and is evaluated by calibrating against observed width/depth ratio. Once calibrated, the hydraulic geometry of natural gravel rivers is well described by the theoretical equations, including discrimination between meandering and braiding channels. The results provide strong support for the assumption that equilibrium or regime river behavior is equivalent to an optimal state and underline the importance of bank strength and sediment load as controls on hydraulic geometry.  相似文献   

15.
Responses of photosynthesis (Pn), stomatal conductance (gs), pre-dawn leaf water potential (Ψlp) and leaf water content (ωl) of creosote bush to 10 rainfall events in the Chihuahuan Desert were investigated. Infiltration of rainwater was manipulated by applying municipal biosolids. The responses of Pnand water relation parameters to rainfall (>10 mm) were mainly dependent upon drought severity: (1) following a moderate drought, Pn, gs, Ψlpand ωlrecovered to corresponding values of irrigated plants within 2 days after a 23-mm rainfall; (2) Ψlpand gsresponded to a 15-mm rainfall within 2 days, following a 25-day drought, whereas responses of Pnand ωlwere delayed for several days; (3) responses of Pn, gs, Ψlpand ωlto a 14·7-mm rainfall were all delayed for several weeks following a 110-day drought, but the delay was longer in Pn, gsand ωlthan in Ψlp. Creosote bush responded to small rainfall events (approximately 6 to 8 mm) with an increase in Ψlp, but without noticeable changes in gsand Pn, suggesting a strong stomatal control of water loss even though xylem embolism was reduced. Biosolids applied at high rates (3·4 and 9 kgm−2) decreased the soil water by 2 to 4 mm following rainfall events, and this in turn delayed and decreased the responses of Pnand water relation parameters to rainfall.Pnand gswere linearly related to ωland exponentially related to Ψlp. With the generally coincidental responses of Pnor gsand ωlto rainfall, we concluded that the responses of Pnand gsto rainfall were dependent on leaf rehydration which resulted from restored hydraulic conductance following drought.  相似文献   

16.
Landscapes have been shown to exhibit numerous scaling laws from Horton's laws to more sophisticated scaling in topography heights, river network topology and power laws in several geomorphic attributes. In this paper, we propose a different way of examining landscape organization by introducing the “river corridor width” (lateral distance from the centerline of the river to the left and right valley walls at a fixed height above the water surface) as one moves downstream. We establish that the river corridor width series, extracted from 1 m LIDAR topography of a mountainous river, exhibit a rich multiscale statistical structure (anomalous scaling) which varies distinctly across physical boundaries, e.g., bedrock versus alluvial valleys. We postulate that such an analysis, in conjunction with field observations and physical modeling, has the potential to quantitatively relate mechanistic laws of valley formation to the statistical signature that underlying processes leave on the landscape. Such relations can be useful in guiding field work (by identifying physically distinct regimes from statistically distinct regimes) and advancing process understanding and hypothesis testing.  相似文献   

17.
Terrestrial Laser Scanning of grain roughness in a gravel-bed river   总被引:2,自引:1,他引:1  
This paper demonstrates the application of Terrestrial Laser Scanning (TLS) to determine the full population of grain roughness in gravel-bed rivers. The technique has the potential to completely replace the need for complex, time-consuming manual sampling methods. Using TLS, a total of 3.8 million data points (mean spacing 0.01 m) were retrieved from a gravel bar surface at Lambley on the River South Tyne, UK. Grain roughness was extracted through determination of twice the local standard deviation (2σz) of all the elevations in a 0.15 m radius moving window over the data cloud. 2σz values were then designated to each node on a 5 cm regular grid, allowing fine resolution DEMs to be produced, where the elevation is equivalent to the grain roughness height. Comparisons are made between TLS-derived grain roughness and grid-by-number sampling for eight 2 m2 patches on the bar surface. Strong relationships exist between percentiles from the population of 2σz heights with measured a-, b-, and c-axes, with the closest matches appearing for the c-axis. Although strong relationships exist between TLS-derived grain roughness (2σz), variations in the degree of burial, packing and imbrication, results in very different slope and intercept exponents. This highlights that conventional roughness measurement using gravel axis length should be used with caution as measured axes do not necessarily represent the actual extent to which the grain protrudes into the flow. The sampling error inherent in conventional sampling is also highlighted through undertaking Monte Carlo simulation on a population of 2000 clasts measured using the grid-by-number method and comparing this with the TLS-derived population of grain roughness heights. Underestimates of up to − 23% and overestimates of up to + 50% were found to occur when considering the D84, and − 20% and overestimates of up to + 36% were found to occur when considering the D50.  相似文献   

18.
A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (100 to 101 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between − 6 and − 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of “zoom method” allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.  相似文献   

19.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

20.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号