首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thermoluminescence dating of Dimlington Stadial deposits in eastern England   总被引:2,自引:0,他引:2  
The loess component of a solifluction deposit of the Dimlington Stadial exposed at the inland site of Eppleworth in eastern England gave a thermoluminescence date of 17.5 ± 1.6 × 103 years. The solifluction deposit is overlain by a slightly weathered till correlated with the Skipsea Till of coastal exposures. which lies between organic horizons with radiocarbon dates of 18,500–18,240 B.P. and 13,045 B.P. Although the till must have been deposited during the Dimlington Stadial (after 18,240 B.P. at Dimlington and after 17,500 B.P. at Epplcworth), it gave apparent TL dates of 42.1 ± 3.6 × 103 years at Eppleworth and 102 ± 9 × 103 years at Dimlington, indicating that the components of the till were not exposed to light immediately before deposition.  相似文献   

2.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

3.
Examination of two radiocarbon-dated vibrocores taken from south of St Kilda at a water depth of about 155 m, a short distance within the maximum position of the Late Devensian (Dimlington Stadial) ice sheet, suggests that the St Kilda Basin became free of glacier ice after 15250 yr BP. Sedimentation in a shallow, low energy, high arctic, muddy environment continued until after 13500 yr BP. There followed a higher energy temperate episode during which water depths were roughly about 40 m: this is correlated with the latter part of the Windermere Interstadial and with the warmer interval known in shallow Scottish seas about or a little before 11 000 yr BP. The Loch Lomond (Younger Dryas) Stadial is marked in the vibrocores by the return of muddy sediments and a cold-water fauna. Relatively shallow water conditions seem to have persisted into the earliest Flandrian, when the water depth was still roughly 60 m, corresponding to a sea-level in the area 90–100 m below present. It is suggested that pack ice was widespread in the northeast Atlantic before the Windermere Interstadial and also during the Loch Lomond Stadial, when it transported shards of Icelandic volcanic ash into the St Kilda basin. Estimates of sea-surface temperature for the last part of the Windermere Interstadial are close to those derived from the deep-sea record for the same period.  相似文献   

4.
Glacial gravels of Late Devensian Dimlington Stadial age (26 000–13 000 years BP) at West Tanfield, North Yorkshire, England, have been cemented by carbonate-rich solutions to produce a strongly indurated calcrete horizon. The low-Mg cements occur as drusy spar, needle fibres, alveolar septal structures, micrite and micropinnacles, indicative of vadose-zone cementation. Some complex pore partition structures attributed to precipitation along meniscus films also occur. These partitions separate air-dominated and water-dominated microenvironments of the vadose zone. The abundance of vadose fabrics shows that the accumulation is not a groundwater calcrete. In addition, much of the carbonate appears to have been precipitated by biological mediation. Carbon and oxygen isotopic data suggest that the carbonate did not form as a result of freezing, as has been suggested for some ‘arctic’soil carbonates. The pollen history of the area since the Devensian suggests that this calcrete precipitated at low temperatures; this contrasts with widely reported occurrences of calcrete in soils of hot arid or semi-arid regions, and suggests that palaeo-calcretes should not be used as absolute palaeoclimatic indicators. The unusual occurrence, albeit localized, of a thick calcrete under a cool and wet climate probably reflects the well-drained nature of the gravels, the abundance of CaCO3 as limestone clasts in the gravel and a high degree of biological activity beneath a forest cover, which created a local environment favouring carbonate precipitation.  相似文献   

5.
A wide variety of Late Devensian periglacial landforms developed on Scottish mountains both before ca. 13,000 BP and during the Loch Lomond Stadial of ca. 11,000-10,000 BP. Nearly all such features are now inactive. Late Devensian periglacial weathering produced three types of regolith mantle (openwork block deposits, sandy diamicts and silt-rich frost-susceptible diamicts), each of which supports a characteristic assemblage of relict landforms. On upper slopes these include large-scale sorted circles and stripes, earth hummocks and nonsorted relief stripes, sorted and nonsorted solifluction features, massive boulder sheets and lobes, and nivation benches. Talus, protalus ramparts, rock glaciers and alluvial fans also developed at the base of mountain slopes.The distribution of Late Devensian periglacial features on Scottish mountains is locally controlled by topography, the response of underlying rocks to periglacial weathering and the limits of former glaciers. Regional variations in the altitude of certain forms of Loch Lomond Stadial age (particularly protalus ramparts and rock glaciers) indicate a decrease in former snowfall eastwards across the Scottish Highlands and northwards from the Highland Boundary Fault. Several upland periglacial features are also diagnostic of former permafrost, and complement palaeotemperature reconstructions based on ice-wedge casts and the equilibrium firn line altitudes of stadial glaciers. These suggest that under stadial conditions mean January temperatures at 600 m and 1000 m on mountains in the Western Grampians must have been no higher than −20°C and −23°C respectively, and possibly several degrees lower.  相似文献   

6.
Late Devensian raised marine deposits predating the Windermere Interstadial (c. 13–11 ka BP) are found between the Moray Firth and Berwick. The widely distributed, sparsely fossiliferous Errol Clay Formation of the firths of Forth and Tay was laid down in a high-arctic environment immediately following the retreat of the Late Devensian (Dimlington Stadial) ice. In the Tay Estuary, sedimentation took place under distal glaciomarine to marine conditions at a time when there was a fully marine connection between the Scottish east coast and the then high-arctic Norwegian Sea. On the south shore of the Moray Firth, the similar, but undated Spynie Clay Formation seems to have been laid down in a wholly glaciomarine environment. Part of the macrofauna attributed to the St. Fergus Silt Formation of the NE Scottish coast may have been either misidentified, or is not in situ. The preservation of the fauna and of delicate sedimentary structures indicate that the arctic clays as a whole were laid down rapidly. It is suggested that tidal currents were minimal, and that waves were dampened by sea ice for much of the year. Bones of the ringed seal, Phoca hispida, have been recorded from 12 sites in eastern Scotland. About 40 macrofaunal taxa are present in the Errol Clay Formation, a number similar to that recorded in the Danish Younger Yoldia Clay, which is of comparable age. The faunal nomenclature is updated, and three species (Cylichna occulta, Retusa obtusa and Lyonsia arenosa) are added to the macrofaunal list for the Errol Clay Formation. Reports of in situ boreal molluscs and of one possibly North American species in the otherwise high-arctic assemblage are not supported by specimens in extant collections. Differential decay of the fauna below the zone of weathering in the Errol Clay Formation may have resulted from early diagenesis. Deposition of the Late Devensian, pre-Windermere Interstadial marine sediments as a whole was probably diachronous, beginning after 15–14 ka BP on the outer coast, but was confined to a short interval (c. 13.5–13 ka BP) at the type site in the Tay Estuary. In the Forth Estuary, the high-arctic marine fauna adjacent to the retreating ice-front may have survived the rapid climatic amelioration (c. 13 ka BP) at the beginning of the Windermere Interstadial (marked by the Main Perth Shoreline) for perhaps a few decades.  相似文献   

7.
This paper presents a major revision of the Late Devensian Lateglacial environmental history of the Isle of Skye, Scotland, based upon a combination of geomorphological, biostratigraphical and radiocarbon evidence. The distribution of glacial and periglacial landforms, and of raised shorelines, suggests that there was only one extensive readvance of local glaciers in southern Skye following the wastage of the Late Devensian ice sheet. Pollen-stratigraphic evidence from 10 sites inside and 4 sites outside the mapped ice limits indicates that this readvance occurred during the Loch Lomond Stadial. At that time over 180km2 of the uplands of south-central Skye were covered by glacier ice, a much more extensive glaciation than previously envisaged. Palynological evidence from four Lateglacial profiles implies that degree of exposure to strong westerly winds was the principal factor determing vegetational contrasts on the island, and that regional differences in vegetational type were less pronounced than has hitherto been suggested. The glacial and palaeobotanical reconstructions reported here are more compatible with Lateglacial data from the Scottish mainland and Hebridean islands than were the previously-published accounts for the Isle of Skye.  相似文献   

8.
The present day maritime climate of Scotland is primarily characterized by strong winds which, in very exposed sites, lead to modern windpolish of rock surfaces. The widespread existence of in situ relict windpolished boulders and bedrock surfaces in Scotland has enabled a reconstruction of prevalent Late Devensian (Late Weichselian) including Loch Lomond Stadial (Younger Dryas) palaeo-wind directions. Previous reconstructions of palaeo-wind directions have been indirect and based mainly on the distribution of aeolian sediments and former glaciers. Observations of relict windpolished microforms and their distribution on boulders and bedrock outcrops on various rock types at 55 sites in different parts of the Scottish Highlands have been used to establish a palaeo-wind map for the area. The reconstruction indicates two sets of dominating wind directions, one between SE and SW and one between NW and N. The maximum age of the windpolish is 16-10 cal. ka BP, but most of it presumably developed during the Loch Lomond Stadial 13-12 cal. ka BP, inferred from the distribution of windpolish sites in relation to the deglaciation chronology and establishment of vegetation.  相似文献   

9.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   

10.
As the majority of the data on Quaternary sediments from the North Sea Basin are seismostratigraphical, we analysed the Elsterian Swarte Bank Formation, the Late Saalian Fisher Formation and the Late Weichselian (Dimlington Stadial) Bolders Bank Formation in order to determine genesis and provenance. The Swarte Bank Formation is a subglacial till containing palynomorphs from the Moray Forth and the northeastern North Sea, and metamorphic heavy minerals from the Scottish Highlands. The Fisher Formation was sampled from the northern and central North Sea. In the north, it is interpreted as a subglacial till, with glaciomarine sediments cropping out further south. These sediments exhibit a provenance signature consistent with the Midland Valley of Scotland, the Eocene of the North Sea Basin, the Grampian Highlands and northeast Scotland. The Bolders Bank Formation is a subglacial till containing palynomorphs from the Midland Valley of Scotland, northern Britain, and a metamorphic heavy‐mineral suite indicative of the Grampian Highlands, Southern Uplands and northeast Scotland. These data demonstrate that there was repeated glaciation of the North Sea Basin during the Middle and Late Pleistocene, with ice sheets originating in northern Scotland. There was no evidence for a Scandinavian ice sheet in the western North Sea basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Pebbly clays and diamictons containing marine shell fragments and peat lenses exposed beneath subglacially deposited Late Devensian till at the Burn of Benholm provide new insights into the glacial history of Quaternary sequences in eastern Scotland. The peat yielded pollen of interstadial affinity (including Bruckenthalia spiculifolia) and non‐finite radiocarbon dates. Comparisons with other pre‐Late Devensian pollen records in northern Scotland suggest that the peat lenses are remnants of an Early Devensian interstadial deposit, of Oxygen Isotope Substage 5c or 5a age. Reworked faunal assemblages in the shelly sediments include Quaternary marine molluscs of low boreal aspect, as well as Mesozoic and Palaeozoic microfossils. Amino acid ratios from fragments of Arctica islandica suggest that the shells are of Oxygen Isotope Stage 9 age or older. The fabric and composition of the shelly sediments are consistent with their emplacement as deformation till during the onshore movement of glacially transported rafts of marine sediment. Folded and sheared contacts between the shelly deposits, peat lenses and the overlying Late Devensian till indicate that the fossiliferous sediments were glacitectonised during the main Late Devensian glaciation, when ice moved from Strathmore and overrode the site from the southwest. British Geological Survey. © NERC 2000.  相似文献   

12.
Bateman, M. D., Buckland, P. C., Whyte, M. A., Ashurst, R. A., Boulter, C. & Panagiotakopulu, E. 2011: Re‐evaluation of the Last Glacial Maximum typesite at Dimlington, UK. Boreas, 10.1111/j.1502‐3885.2011.00204.x. ISSN 0300‐9483. Recent erosion has allowed re‐examination of the stratigraphy and sampling for both optically stimulated luminescence dating and palaeoecological analysis of the key sections in the Last Glacial Maximum deposits at Dimlington in East Yorkshire, England. Both stratigraphy and fossil insect evidence support a subaerial origin for laminated and cross‐bedded sediments between two diamictons previously interpreted as synchronous. The fossil biota indicates conditions similar to those of a pond on sandur in the high Arctic, with little or no vegetation cover. The existence of distinct oscillations of the ice front is indicated. The first, within the period 21.7–16.2 ka, appears coincident with climate warming, as deduced from Greenland ice‐core evidence, and is interpreted as an ice stream associated with changing flow patterns within the British–Irish Ice Sheet (BIIS). The second, dating between 16.2 and 15.5 ka, appears to coincide with a climatic cooling, although current models show that the BIIS had by this period already retreated back to ice centres. This new evidence supports the view that the eastern sector of the BIIS did not reach its maximal extent synchronously with other parts of the BIIS.  相似文献   

13.
The tongue-shaped mass of debris and associated ridges on the cirque floor below Craig Cerrig-gleisiad, Brecon Beacons National Park is important and controversial because it has been attributed to more than one glacier advance during the Late Devensian. A new origin is proposed involving landslide development from the collapse of part of the western headwall followed by a single phase of glacier development in the Loch Lomond Stadial (Younger Dryas), which reworked the landslide sediments. Evidence for this landslide, which provides useful criteria for differentiating moraines formed by small glaciers from landslides, lies in tension cracks, backward-tilted blocks and bedrock joints dipping out of the western headwall, together with lateral levées, upstanding termini and angular clasts with only occasional, indistinct striae on the tongue-shaped mass, which is interpreted as a flowslide. Glacier reworking of debris in the upper part of the Cwm Cerrig-gleisiad landslide is indicated by subparallel ridges rising to 20 m above the cirque floor containing abraded clasts (16-32% striated). This interpretation is supported by a comparison with the morphological and sedimentary characteristics of a neighbouring landslide at Fan Dringarth, where no glacier developed in the Loch Lomond Stadial. The existence of paraglacial landsliding has significant palaeoenvironmental implications leading to: (1) erroneously large estimates of equilibrium line depression ($Δ$ELA) in the Loch Lomond Stadial; (2) consequent underestimates of summer palaeotemperatures and/or overestimates of the contribution of wind-drifted snow to glacier accumulation; and (3) larger moraines than usual and overestimation of the efficacy of glacial erosion because of antecedent processes.  相似文献   

14.
The Lune Gorge and the uplands of the southern Shap Fells represent a key area in developing an understanding of the dynamics of the Late Devensian glaciation (Dimlington Stadial) of northern England. Here ice masses emanating from southern Scotland, the Lake District and the Howgill Fells interacted in the area of the upper Lune valley. Glacial landforms are recorded and tills noted. The dispersal pattern of Shap granite (Sg) erratics is mapped as these clasts are an important tracer of regional ice movements and local ice dynamics. This new information is synthesised with existing literature to provide an understanding of ice dynamics in an area of complex ice flow history. In particular, the ice flow interactions over an area of the western Pennines and the southern Shap Fells have been defined.Early Dimlington ice flow in the vicinity of the upper Lune valley was easterly. Later a northerly shift in the position of a regionally significant west–east aligned ice divide led to topographic steering of southerly basal ice flows, resulting in the development of a western ice stream (Mint Sg plume) and an eastern ice stream (Lune Sg plume); both flowing south around the massif of the southern Shap Fells. At that time, southerly flow of basal ice over the highest ridges of the Grayrigg massif in the southern Shap Fells was relatively weak. Whereas the western stream extended into the Lancashire lowlands, the eastern ice stream was impeded in the Lune Gorge by ice emanating from Borrowdale which forced northern ice to the eastern side of the Lune Gorge where it was blocked by western flowing Howgill ice; the latter extending as far as just east of Kendal.During the late Dimlington, the ice masses over the Mint valley and the southern Shap Fells largely thinned and retreated to the north and west, with a surge in northerly ice movement within the upper Lune valley that did not override the western Pennines. Local ice dynamics are well-illustrated in the western margin of the Pennines (Crosby Ravensworth Fell Gaythorne Plain), where the disposition of erratics reflects local late west-to-east weak down-wasting ice flow and the presence of subglacial meltwater drainage channels. However, ice ultimately decayed in situ on Crosby Ravensworth Fell Gaythorne Plain. Similarly, after complex variable easterly and southerly ice flow during the early Dimlington, there was weak northerly ice flow in the later phase over Birkbeck Fells Common before ice thinned and retreated from Grayrigg Forest. An extensive ice stream, fed by ice emanating from an ice dispersal centre in the eastern Lake District, occupied the large trough of Borrowdale that transverses the southern Shap Fells, but its extension and recession dynamics remain enigmatic.“Glacial Theory …, in its application to the transport of blocks across Stainmoor, involves such obvious mechanical absurdities that the author considers it totally unworthy of the attention of the Society.” William Hopkins, 1842  相似文献   

15.
The last British-Irish Ice Sheet (BIIS) created a landscape with many sedimentary basins that preserve archives of paleoenvironmental and paleoclimatic change during the Last Glacial-Interglacial Transition (LGIT; ~ 18-8 ka BP). The typical lithostratigraphic succession of these archives is composed of minerogenic/allogenic sediments formed during cold climatic conditions and organic-rich/authigenic sediments during warmer climates. This paper presents a multi-core lithostratigraphy compiled from the extant lake and surrounding basin at Llangorse Lake, south Wales, a basin lying within the southernmost limits of the last BIIS. This lake contains one of the longest continuous terrestrial sediment successions in the UK. Uncertainty previously existed concerning the presence and distribution of sediments at the site related to the Windermere Interstadial (~ 14.7 to ~ 12.9 ka BP) and Loch Lomond Stadial (~ 12.9 to 11.7 ka BP). A new borehole survey demonstrates that LGIT-age sediments are present at the site with nekron mud (gyttja), corresponding to the Lateglacial Interstadial, deposited in the deeper part of the lake waters and that these deposits are equivalent in age to marl deposits found at shallower depths at the margins of the basin. These deposits are associated with warmer conditions experienced during the Windermere Interstadial and Holocene, whilst minerogenic-rich sediments were deposited during the colder climatic conditions of the Dimlington Stadial and the Loch Lomond Stadial with rangefinder radiocarbon dates confirming this attribution. A model of lake level changes shows that drainage of the Dimlington Stadial glacial lake caused the largest fall, but there was also a further, smaller lake level fall at the end of the Windermere Interstadial and/or the start of the Loch Lomond Stadial, before the level rose in the early Holocene. The lithostratigraphic results presented here form the framework for further paleoenvironmental and paleoclimatic research at Llangorse Lake.  相似文献   

16.
Sand deposits described at three sites near Caistor, north Lincolnshire (UK), provide a record of Late Devensian (Late Weichselian) to Holocene palaeoenvironments at the western margin of the European sand belt. Thermoluminescence (TL) and radiocarbon analyses provide for the first time a chronological framework for the demise of proglacial Lake Humber and the onset of coversand deposition. The reconstructed palaeoenvironmental history suggests that proglacial Lake Humber had receded from its initial high-level stand before c. 18 ka, exposing the lake floor to periglacial conditions marked by the development of thermal contraction cracks. In the period between c. 18 and 14 ka, sand-depositional processes changed from dominantly fluvial to aeolian. The fluvial activity was possibly a consequence of ameliorating winter climates between c. 17 and 16 ka. The aeolian coversand deposition in this period has not been previously recognized in Britain and correlates with the Older Coversand II and Younger Coversand I deposits elsewhere in the European sand belt. Peat accumulation followed during the Windermere (Bølling/Allerød) Interstadial and early part of the Loch Lomond Stadial (Younger Dryas) before regionally extensive coversand deposition took place in the later part of the Loch Lomond Stadial. This coversand correlates with the widespread Younger Coversand II deposits found both within the UK and across the European sand belt. The Holocene has been characterized by widespread stability with the development of soils on the coversand punctuated with periods of localized reworking through to the present day.  相似文献   

17.
On Hirta, the largest island of the St. Kilda archipelago near the western edge of the Scottish continental shelf, evidence has been found for four cold periods and one intervening mild period. During the most recent cold period (the Loch Lomond Stadial), two protalus ramparts were formed. Prior to this there occurred two periods of valley glaciation separated by a mild interval during which the local vegetation was dominated by grasses and sedges. For the most recent valley glaciation (= Late Devensian glacial maximum) a mean July temperature of 4°C is inferred. At this time intensive periglacial processes were operative down to present sea level. At some earlier, pre-Dcvensian, time St. Kilda was invaded by the Scottish ice sheet.  相似文献   

18.
Pollen analysis of a radiocarbon-dated core from a shallow basin in volcanic hills in eastern Scotland revealed the existence of Late Devensian and Flandrian deposits. Much of the vegetation history of the Flandrian proved to be missing due to a hiatus in the profile. The Late Devensian pollen record included anomalous arboreal taxa of three possible origins: contamination, long-distance wind transport and reworking of interstadial material. Because of lacking information on Late Devensian climates and the location of thermophilous arboreal refugia in Europe a re-examination of supposedly contaminated British Late Devensian pollen records might well be rewarding.  相似文献   

19.
A stratigraphy for Quaternary deposits on the western Scottish shelf has been erected using seismic and borehole data. Eight new formations are defined and described with evidence presented for the environ-ment of deposition of each formation. Most of the Quaternary sediments preserved on the shelf arc shown to have accumulated under stadial or glacial conditions. The possible age of each formation is discussed within the context of evidence provided from the mainland, shelf and deep-sea cores. Two are thought to be pre-Devensian, one is possibly pre-Devcnsian. one is possibly Early and/or Middle Devensian, two are probably Late Devensian, one is Late Devensian to Holocenc and one Present day in age. It is suggested that the Late Devensian ice reached the shelf margin south of the Outer Hebridcan Platform.  相似文献   

20.
Mapping of glacial meltwater channels along the length of the 25-km Mid-Cheshire Ridge reveals evidence for four distinctive channel morphologies, which are used to establish the pattern of meltwater flow during the Late Devensian glaciation. A key characteristic of all channels is an abrupt change in morphology between inception on the Mid-Cheshire Ridge and the downstream continuation on the surrounding Cheshire Plain, with large reductions in channel cross-sectional area at this point. The interpretation of this evidence is that meltwater flowing off the bedrock ridge was absorbed into a layer of permeable sediment beneath the Late Devensian ice sheet. This permeable sediment is significant because it would have acted as a deforming layer beneath the former ice sheet in this area. Reconstruction of the Late Devensian ice sheet based on information from the meltwater channels and using values of shear stresses typical of ice sheets resting on deformable beds (ca. 20 kPa) suggests an ice surface elevation over the Irish Sea of ca. 700 m. This value is considerably less than previous estimates of the vertical extent of the ice sheet of ca. 1000–1200 m and has important implications for the rapidity and mode of deglaciation during the Late Devensian. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号