首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
GPS/GLONASS载波相位测量模糊度解算方法   总被引:3,自引:1,他引:3  
GPS/GLONASS组合载波相位测量,在快速静态和动态定位等方面的应用具有一定的优势。由于GLONASS采用频分多址的方式识别卫星,每颗卫星的载波频率各不相同,所以在载波测量数据处理中不能采用与GPS载波相位测量数据处理相同的方法。文中就GLONASS、GPS/GLONASS组合载波相位测量整周模糊度解算的基本思路和方法进行了介绍。  相似文献   

2.
GPS/GLONASS组合载波相位测量,在快速静态和动态定位等方面的应用具有一定的优势.由于GLONASS采用频分多址的方式识别卫星,每颗卫星的载波频率各不相同,所以在载波测量数据处理中不能采用与GPS载波相位测量数据处理相同的方法.文中就GLONASS、GPS/GLONASS组合载波相位测量整周模糊度解算的基本思路和方法进行了介绍.  相似文献   

3.
针对短基线详细研究GPS/GLONASS组合定位函数模型,引入一种简单易行的模糊度求解方法以正确固定GLONASS模糊度,最后笔者自编软件实现基于相位差分的GPS/GLONASS高精度组合定位,并采用实际数据验证其正确性和有效性。结果表明:GPS/GLONASS组合系统优于单系统,采用相位观测值可获得高精度定位结果。  相似文献   

4.
本文首先介绍了GPS动态相对定位的数据预处理和周跳探测方法和流程,这是实现高精度定位的前提,然后提出一种确定GPS双差整周模糊度的方法,采用M-W组合的方式,经过多历元的数据平滑得到精度在±1周以内的宽巷模糊度的浮点解,然后利用残差验后方差最小的原则搜索整周模糊度,最后用自编程序对实测数据进行验证,证明了本文方法的有效性。  相似文献   

5.
针对GLONASS采用频分多址技术导致双差观测方程中双差模糊度失去整周特性的问题,提出了一种基于站间单差模糊度分别求解的方法,并结合附加模糊度参数的卡尔曼滤波模型,实现了GPS/BDS/GLONASS组合RTK定位。通过自编RTK程序对GPS、BDS与GLONASS双频实测短基线数据进行测试,并对比分析其他RTK模式下的稳定性与定位精度。结果表明,GLONASS单频和双频定位的模糊度固定率分别为99.8%、99.7%,其定位精度与BDS、GPS相差不大。在单频或双频RTK定位中,双系统、三系统组合定位的稳定性和定位精度明显高于单系统,其中三系统组合定位的稳定性最好,精度最高。随着频率增加,初始化时间明显减少,为实现单历元获得固定解提供了可能性。  相似文献   

6.
组合GPS/GLONASS精密定位的观测值随机模型   总被引:1,自引:0,他引:1  
为了获得组合GPS/GLONASS精密定位结果,该文从理论和数值实例两方面分析了研究组合GPS/GLONASS观测值随机模型的重要性,提出了两种利用观测值的误差残差估计随机模型的方法,即验后估计法和方差-协方差迭代法。理论和数值结果表明,这两种随机模型估计方法与采用经验随机模型相比,可以提高整周模糊度解算的可靠性和定位精度,所提出的观测值随机模型估计方法理论上更严格,实践上可行,并建议采用方差-协方差迭代法估计组合GPS/GLONASS精密定位的观测值随机模型。  相似文献   

7.
基准站间整周模糊度的快速准确固定是实现网络RTK高精度快速定位的前提。对于GPS/GLONASS/BDS组合系统长基线,模糊度维数大幅度增加,加之观测噪声、大气残余误差等因素的影响,很难快速准确地固定所有模糊度,尤其是低高度角卫星模糊度。提出了一种基于部分固定策略的GPS/GLONASS/BDS组合网络长基线部分模糊度快速解算方法,以截止高度角、模糊度固定成功率以及Ratio值为主要参数,优选模糊度固定子集,以实现长距离基准站间模糊度快速固定。通过实测GPS/GLONASS/BDS三系统长基线数据的实验验证,部分模糊度固定方法可有效避免低高度角卫星对模糊度固定的影响,从而显著提高模糊度固定时的成功率及Ratio值,缩短长距离基准站间模糊度准确固定所需的时间。  相似文献   

8.
实现了BDS/GPS/GLONASS三系统组合RTK定位算法,介绍了BDS/GPS/GLONASS三系统组合RTK数学模型,解决了多模融合导航定位时空基准统一问题,并针对附加模糊度参数的卡尔曼滤波函数模型,提出了一种确定实时动态定位中卡尔曼滤波参数的方法。编制了BDS/GPS/GLONASS RTK定位程序,并对28 m超短基线及31 km短基线实测数据进行了解算。对比分析了BDS、GPS、GLONASS、BDS/GPS、BDS/GLONASS、GPS/GLONASS、BDS/GPS/GLONASS七种模式下的定位结果。  相似文献   

9.
针对单历元RTK定位中受到卫星升起、周跳频发等外界条件干扰时,整周模糊度长时间不能固定,严重影响RTK定位实时精度的问题。文中提出一种用载波相位约束整周模糊度的方法来提高模糊度固定率、Ratio值和解算精度,并且结合GPS单系统、GPS/GLONASS双系统两组实测数据进行未加入和加入载波相位约束整周模糊度的比较实验。结果表明该方法可行。  相似文献   

10.
随着Galileo系统的逐步建成并投入使用,以及GPS的现代化,如何利用双系统多频率的组合观测值进行高精度定位已成为目前业内关注的热点问题。本文从传统的GPS双差观测方程出发,推导出了GPS-Galileo组合定位的数学模型,提出了其组合定位中的多频周跳探测方法和整周模糊度快速求解的方法。最后利用模拟软件对GPS、Galileo以及GPS-Galileo三种定位方式对不同长度基线的解算精度进行了比较分析,实验结果证明了所提方法的正确性和可行性。  相似文献   

11.
To obtain the GLONASS satellite position at an epoch other than reference time, the satellite's equation of motion has to be integrated with broadcasting ephemerides. The iterative detecting and repairing method of cycle slips based on triple difference residuals for combined GPS/GLONASS positioning and the iterative ambiguity resolution approach suitable for combined post processing positioning are discussed systematically. Experiments show that millimeter accuracy can be achieved in short baselines with a few hours' dual frequency or even single frequency GPS/GLONASS carrier phase observations, and the precision of dual frequency observations is distinctly higher than that of single frequency observations.  相似文献   

12.
To obtain the GLONASS satellite position at an epoch other than reference time,the satellite‘s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cycle slips based on triple difference residuals for combined GPS/GLONASS positioning and the iterative ambiguity resolution approach suitable for combined post processing positioning are discussed systematically.Experiments show that millimter accuracy can be achieved in short baselines with a few hours‘ dual frequency or even single frequency GPS/GLONASS carrier phase observation,and the precision of dual frequency observations is distinctly higher than that of single frequency observations.  相似文献   

13.
段举举  沈云中 《测绘学报》2012,41(6):825-830
论文介绍了GPS/GLONASS组合静态相位相对定位模型,将GLONASS双差观测方程的模糊度参数表示成参考卫星的单差模糊度和双差模糊度参数;用误差分析法证明了单差模糊度按实参数估计不影响基线解算精度,而GLONASS双差模糊度必须按整参数进行解算;用Helmert方差分量估计确定GPS和GLONASS观测值的合理权比。实际观测数据处理结果表明:GPS/GLONASS组合定位较单一系统解算的基线精度均有提高,尤其比GLONASS单系统的解算精度有显著提高,比GPS单系统的精度也有适当提高,其中单历元基线解算精度约提高了10%,当单一系统的可用卫星数少于4颗时,GPS/GLONASS组合定位更具有应用价值。  相似文献   

14.
Due to the different signal frequencies for the GLONASS satellites, the commonly-used double-differencing procedure for carrier phase data processing can not be implemented in its straightforward form, as in the case of GPS. In this paper a novel data processing strategy, involving a three-step procedure, for integrated GPS/GLONASS positioning is proposed. The first is pseudo-range-based positioning, that uses double-differenced (DD) GPS pseudo-range and single-differenced (SD) GLONASS pseudo-range measurements to derive the initial position and receiver clock bias. The second is forming DD measurements (expressed in cycles) in order to estimate the ambiguities, by using the receiver clock bias estimated in the above step. The third is to form DD measurements (expressed in metric units) with the unknown SD integer ambiguity for the GLONASS reference satellite as the only parameter (which is constant before a cycle slip occurs for this satellite). A real-time stochastic model estimated by residual series over previous epochs is proposed for integrated GPS/GLONASS carrier phase and pseudo-range data processing. Other associated issues, such as cycle slip detection, validation criteria and adaptive procedure(s) for ambiguity resolution, is also discussed. The performance of this data processing strategy will be demonstrated through case study examples of rapid static positioning and kinematic positioning. From four experiments carried out to date, the results indicate that rapid static positioning requires 1 minute of single frequency GPS/GLONASS data for 100% positioning success rate. The single epoch positioning solution for kinematic positioning can achieve 94.6% success rate over short baselines (<6 km).  相似文献   

15.
1 IntroductionReal_timekinematicGPSprecisepositioninghasbeenplayinganincreasingroleinbothsurveyingandnavigation ,andhasbecomeanessentialtoolforpreciserelativepositioning .However,reliableandcorrectambiguityresolutiondependsonobserva tionsuponalargenumbe…  相似文献   

16.
利用码和载波相位观测值半和线性组合可以消除电离层一阶误差的特性,讨论了基于UofC消电离层组合的GPS/GLONASS精密单点定位的数学模型。UofC模型对两个频率上的模糊度参数分别进行估计,为进一步获得模糊度参数的整数解提供了便利。利用IGS跟踪站的GPS/GLONASS观测数据对UofC模型和传统的在两个频率码观测值间进行消电离层组合的模型进行了比较,统计结果表明,UofC模型与传统模型相比在平面位置定位精度上略有提高,但总体上差别不大。  相似文献   

17.
By the beginning of 1996 the Russian Global Navigation Satellite System (GLONASS) constellation was completely deployed, although several satellites have already been decommissioned since then. With 17 satellites in operation (status as of 21 December 1997, although two of them are unusable and one is a non-operative spare), GLONASS is now an alternative and a complement to GPS. We present an evaluation of the current status of the GLONASS system, paying particular attention to its possible geodetic applications. Data from several receivers were used for this evaluation, including data from GPS receivers in order to allow for a comparison between GLONASS and GPS. We tested the quality of the geodetic observables, the consistency of the broadcast orbits, the single-point positioning results, and we also looked at multipath errors and cycle slips in our GLONASS data. In general the GLONASS performance has been found to be very satisfactory, even better than GPS in aspects such as single-receiver positioning or in the quality of the second-frequency pseudo-ranges due to the degradation of the GPS measurement quality under selective availability and anti-spoofing. Received: 26 November 1996 / Accepted: 16 January 1998  相似文献   

18.
GLONASS伪距频间偏差难以利用经验模型消除。在RTK定位解算中,尤其是需顾及大气延迟的中长距离异质基线,IFCB会降低模糊度收敛速度,甚至导致模糊度固定错误。本文基于双差HMW组合和消电离层组合,提出一种站间IFCB实时估计算法,实时获取各频段的非组合站间单差IFCB。试验结果表明,站间IFCB长期稳定,可达数个纳秒;在GPS/GLONASS观测值先验误差比值为3:5的条件下,未改正的IFCB可能导致基线GPS/GLONASS组合RTK定位性能比单GPS差。将本文提出算法应用于RTK定位,能够有效消除IFCB的影响,RTK模糊度浮点解精度、定位收敛速度和固定率都有明显改善,部分基线的RTK定位首次固定时间从9.2 s提高到2.1 s,固定解比率从84.5%提高到97.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号